anonymous
  • anonymous
1- Can anyone tell me how to solve the limits required for question 3.a Section D Problem Set 1 6 tan(3x)(sec(3x)^2) = 6 sin (x)/ (cos(x)^3) 2 - How do the 3's before the x's cut? Thanks in advance.
OCW Scholar - Single Variable Calculus
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

calculusfunctions
  • calculusfunctions
Is your question: 6tan(3x)sec²(3x) = (6sinx)/cos³x or 6tan(3x)sec(3x)² = (6sinx)/cos(x)³ ? Because there is fundamental difference between those two equations. When you don't express yourself clearly, it makes it difficult for people to help you.
anonymous
  • anonymous
What is the difference?
anonymous
  • anonymous
He is asking if you are cubing/squaring the result you get after taking the cos of the angle or are you taking the cos of the cube of the angle. (I am pretty sure hes asking: 6tan(3x)sec²(3x) = (6sinx)/cos³x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes, that's the equation van1234. The cube is outside the cos function, as I wrote. Any ideas how the 3's inside the tan and sec functions cut? Btw any insight on the first question? Thanks.
anonymous
  • anonymous
Is this the question you are referring to in your first question: \[(x-2)\div(x ^{2}-4)\] If so, then here's my solution. You know that the denominator is a difference of squares, so you can factor that to be: (x+2) (x-2) Then you see that the x-2 's cancel, (keep in mind though that you will have a hole at x = 2, as x=2 still does not work in the original function). You are left with: \[1 \div (x +2)\] Which means that there is an asymptote at x = -2.
anonymous
  • anonymous
Thanks van1234, any idea about the second question?

Looking for something else?

Not the answer you are looking for? Search for more explanations.