ksaimouli
  • ksaimouli
f(x) is even and g(x) is odd
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
chestercat
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ksaimouli
  • ksaimouli
\[\int\limits_{0}^{5}f(x)dx=8\]
ksaimouli
  • ksaimouli
\[\int\limits_{0}^{5}g(x)=4\]
ksaimouli
  • ksaimouli
find\[\int\limits_{-5}^{5}[f(x)+g(x)]dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
@wio
ksaimouli
  • ksaimouli
\[\int\limits_{-5}^{0}[f(x)+g(x)] +\int\limits_{0}^{5}[f(x)+g(x)] dx\]
ksaimouli
  • ksaimouli
@abb0t
ksaimouli
  • ksaimouli
after that i have no idea
ksaimouli
  • ksaimouli
i know the 2nd part 12
ksaimouli
  • ksaimouli
-+12
ksaimouli
  • ksaimouli
well even mean f(-x)=f(x) will that mean\[\int\limits_{-5}^{0}f(x)=-8\]
ksaimouli
  • ksaimouli
because\[-\int\limits_{5}^{0}f(x)=-8 \]
ksaimouli
  • ksaimouli
even aplies if negative in f(x)? f(-x)=f(x)
KingGeorge
  • KingGeorge
Why should \[-\int\limits_{5}^{0}f(x)=-8\]be true? I think this should be 8 and not -8.
ksaimouli
  • ksaimouli
because that is the rule right to flip flop - should be their
KingGeorge
  • KingGeorge
\[\int_0^5 f(x)=8\]\[\int_5^0 f(x)=-8\]\[-\int_5^0 f(x)=8\]
ksaimouli
  • ksaimouli
\[-\int\limits_{-5}^{0}f(x)=\]
KingGeorge
  • KingGeorge
But you're certainly on the right path to solving this. You know\[\int\limits_{0}^{5}[f(x)+g(x)] dx=12\]So you just need to find \[\int\limits_{-5}^{0}[f(x)+g(x)]dx =\int\limits_{-5}^0f(x)\;dx+\int\limits_{-5}^0g(x)\;dx\]First, lets start with the f(x) part.
zepp
  • zepp
I drove by to say hello to @KingGeorge!
KingGeorge
  • KingGeorge
Since \(f(x)=f(-x)\), we have that \[\begin{aligned} \int\limits_{-5}^0f(x)\;dx&=\int\limits_{-5}^0f(x)\;dx \\ &=\int\limits_{-5}^0f(-x)\;dx\\ &=\int\limits_{5}^0f(-u)\;(-du)\qquad\text{this is a u-sub for }u=-x.\\ &=\int\limits_0^5f(-u)\;du\\ &=\int\limits_0^5f(u)\;du\\ &=8 \end{aligned}\]
KingGeorge
  • KingGeorge
This is basically the same thing you do for \(g(x)\). Instead we have \(-g(x)=g(-x)\).If we repeat the above argument, we get to the point \[\int\limits_0^5g(-u)\;du\]Substitute for \(-g(u)\), and we get \[-\int\limits_0^5g(u)\;du=-4\]
KingGeorge
  • KingGeorge
Did this all make sense? And hello to you too @zepp!
ksaimouli
  • ksaimouli
i i got it i did little bit different i took u=-x and then -du=dx
KingGeorge
  • KingGeorge
There is a typo in my work two posts above. The second line should not be there. (The line that reads \(=\int_{-5}^0f(-x)\;dx\)).
KingGeorge
  • KingGeorge
That works as well.
ksaimouli
  • ksaimouli
|dw:1356649511965:dw|
ksaimouli
  • ksaimouli
ohk thx a lot
KingGeorge
  • KingGeorge
You're welcome.
ksaimouli
  • ksaimouli
i will work on this if i have nay questions can i post on this wall
KingGeorge
  • KingGeorge
sure.

Looking for something else?

Not the answer you are looking for? Search for more explanations.