ksaimouli
  • ksaimouli
find g(-1) and g''(-1)
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ksaimouli
  • ksaimouli
|dw:1356718690979:dw|
ksaimouli
  • ksaimouli
\[g(x)=\int\limits_{0}^{x}f(t) dt\]
ksaimouli
  • ksaimouli
graph above is f

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
|dw:1356718836761:dw|
ksaimouli
  • ksaimouli
find g(-1)
ksaimouli
  • ksaimouli
hartnn
  • hartnn
can u find the point of intersection of those 2 lines ? or, equation of those lines ??
mathmate
  • mathmate
Is g(x) a constant? I don't see x in the definition of g(x). Does f(x) = 0 for x>2, or does it decrease forever?
ksaimouli
  • ksaimouli
ksaimouli
  • ksaimouli
i know that f'(-1)=0
ksaimouli
  • ksaimouli
what i have no idea how to find the f(-1)
hartnn
  • hartnn
|dw:1356720077842:dw|
ksaimouli
  • ksaimouli
slope is 3
hba
  • hba
Now you can find the equation :)
hartnn
  • hartnn
and u also have point , so equation is ?
ksaimouli
  • ksaimouli
y=3x+3
hartnn
  • hartnn
x=-1 thats your f(t) for 0 to -1
hartnn
  • hartnn
\(g(-1)=\int\limits_{0}^{-1}(3x+3) dt\)
hartnn
  • hartnn
can u find g(-1) now
ksaimouli
  • ksaimouli
yes
hartnn
  • hartnn
good :)
hba
  • hba
-(3x+3)
ksaimouli
  • ksaimouli
-3/2
ksaimouli
  • ksaimouli
what about f''(-1)
hartnn
  • hartnn
u sure about -3/2 ??
ksaimouli
  • ksaimouli
yes
ksaimouli
  • ksaimouli
|dw:1356720626985:dw|
hartnn
  • hartnn
ok, \(g'(x)=(d/dx)\int_0^xf(t)dt = f(x)\\so,g''(x)=f'(x)\\g"(-1)=f(-1)\) can u find f(-1) ?? and no
ksaimouli
  • ksaimouli
why not
hartnn
  • hartnn
why ?
hartnn
  • hartnn
why u want to use that line ?? f(-1) is simple..
ksaimouli
  • ksaimouli
ok
ksaimouli
  • ksaimouli
0
hartnn
  • hartnn
yes, correct.

Looking for something else?

Not the answer you are looking for? Search for more explanations.