• anonymous
A roll of paper towels is wound around a hollow cardboard tube. The cardboard tube in the middle of the roll has an outside radius of 2.36 centimeters. The thickness of the paper is 0.04 centimeters. The sequence of distances of the loops of paper away from the center of the roll, in centimeters, is the following: a1, a2, a3, a4, a5, ... = 2.40, 2.44, 2.48, 2.52, 2.56, ... What is the radius of the 95th loop of paper, starting from the center of the tube? A. 6.16 cm b. 6.36 cm c. 6.26 cm d. 6.46 cm
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
This is an arithmetic sequence with a common difference of .04. Any term, An = A1 + (n - 1)d where A1 is the first term, n is the index of (in our case 95) and d is the common difference. A_95 = 2.40 + (95 - 1) * 0.04 = 6.16
  • anonymous
n is the index of the term*

Looking for something else?

Not the answer you are looking for? Search for more explanations.