DLS
  • DLS
An interesting question! :D ABC is an equilateral triangle such that the vertices B and C lie on two parallel line at a distance of 6.If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle is=?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
if B and C lie on parallel lines, then BC = side = 6 ...?
DLS
  • DLS
units
DLS
  • DLS
no unit mentioned if u are asking for one

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
i was not asking, i was telling side =6
DLS
  • DLS
oh :P
DLS
  • DLS
|dw:1356782149154:dw| my diagram
hartnn
  • hartnn
if ABC is equilateral AB=BC=AC=6
DLS
  • DLS
|dw:1356782275365:dw| so cant we do like this.. sin60=h/4
hartnn
  • hartnn
u wanted to know length of side ... = BC = 6 thats it.
DLS
  • DLS
O_o answer isnt this!!
DLS
  • DLS
we have to find length
hartnn
  • hartnn
of ?
DLS
  • DLS
side of the eq triangle :/
hartnn
  • hartnn
maybe the side BC is tilted , then
DLS
  • DLS
yes..thats what im saying
hartnn
  • hartnn
so, your figure is incorrect.
DLS
  • DLS
:/
hartnn
  • hartnn
where u have shown BC =6
experimentX
  • experimentX
|dw:1356782465079:dw|
DLS
  • DLS
why wont that be 60 :o
hartnn
  • hartnn
|dw:1356782731705:dw|
DLS
  • DLS
thats nt touching?
hartnn
  • hartnn
ofcourse, it is...
DLS
  • DLS
then w|dw:1356783287510:dw|
hartnn
  • hartnn
i have a long way.
hartnn
  • hartnn
|dw:1356783439425:dw|
hartnn
  • hartnn
\(a=\sqrt{x^2-4^2} \\ b=\sqrt{x^2-6^2} \\ a+b=\sqrt{x^2-2^2}\) you can find 'x' from here.
hartnn
  • hartnn
i hope ther's a shorter way...
DLS
  • DLS
x=root 52 or smt?
DLS
  • DLS
solution and answer given in my book is DANGEROUS :/
hartnn
  • hartnn
http://www.wolframalpha.com/input/?i=sqrt%28x%5E2-16%29%2Bsqrt%28x%5E2-36%29%3Dsqrt%28x%5E2-4%29 what answer u have ?
DLS
  • DLS
I have.. \[\LARGE 2 \frac{\sqrt{28}}{\sqrt{3}}\]
hartnn
  • hartnn
which is exactly what i got.
hartnn
  • hartnn
\(\LARGE 2 \frac{\sqrt{28}}{\sqrt{3}}=\LARGE 4\frac{\sqrt{7}}{\sqrt{3}}\)
DLS
  • DLS
okay yes
hartnn
  • hartnn
using \(a=\sqrt{x^2-4^2} \\ b=\sqrt{x^2-6^2} \\ a+b=\sqrt{x^2-2^2}\)
DLS
  • DLS
hold on one sec..let me go through it once again
DLS
  • DLS
lol that was a nice method :|
hartnn
  • hartnn
just pythagoras, thrice...
DLS
  • DLS
yeah..!

Looking for something else?

Not the answer you are looking for? Search for more explanations.