Find the BVM of θ(x,t): by Deriving the equation ∂φ/∂t=k/ρc (∂^2 φ)/(∂x^2 ) - (h/ρAc) φ , where φ(x,t) = (θ(x,t)- θ_0)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the BVM of θ(x,t): by Deriving the equation ∂φ/∂t=k/ρc (∂^2 φ)/(∂x^2 ) - (h/ρAc) φ , where φ(x,t) = (θ(x,t)- θ_0)

Differential Equations
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1356836792021:dw|
how to prove \[\theta(x,t)\] ?
form this qs: Find the BVM of θ(x,t): by Deriving the equation ∂φ/∂t=k/ρc (∂^2 φ)/(∂x^2 ) - (h/ρAc) φ , where φ(x,t) = (θ(x,t)- θ_0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

whats BVM?
Boundasy Value Mean
please jsu ignore the BVM, just fint the partial derivative of (θ(x,t)
The new BC at L/2 would be: ∂θ(L/2, t)/∂x = 0, which means for all time t the slope of the temperature curve versus x is zero at x = L/2, because the temperature profile is symmetric and continuous about the midpoint. To prove this is true take your heat solution equation where θ(x,t) = θ0 + Sum terms and take the partial derivative of that eqn. with respect to x.

Not the answer you are looking for?

Search for more explanations.

Ask your own question