anonymous
  • anonymous
Riemann Sum . . . Attached is the problem of evaluating a series as n approaches infinity. I am stuck on how to continue. I know if I can sqrt(n / (n + 1)) in a different form where there is only one n, I can do the rest.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
That is to say, if I can get sqrt(n / (n + k)) to a form with only one n in it.
anonymous
  • anonymous
@logicalApple, I'm not sure either with the rest of the expression but if you have 1/n at the front and n is approaching infinite, can the whole thing just be approaching zero?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
1/n would approach 0 but that wouldn't cause the sum to approach 0. What if what is inside the parentheses approaches infinity? Then we have an indeterminate form 0 * infinity. If we can frame this into a Riemann Sum then it becomes a (hopefully) simple integration problem.
anonymous
  • anonymous
hm, I didn't think of that. I have no idea then. Sorry!
anonymous
  • anonymous
Maybe change the expression to:\[\sqrt{\frac{n}{n+k}}=\sqrt{\frac{(n+k)-k}{n+k}}=\sqrt{\frac{n+k}{n+k}-\frac{k}{n+k}}\]\[=\sqrt{1-\frac{k}{n+k}}\]This expresion has only one n in it.
anonymous
  • anonymous
Hm... now there are two k's. I wonder if it's possible to write it in a form where there is only one of each? Otherwise I am not sure how to continue. I will work on this later. Thanks for the suggestions!
anonymous
  • anonymous
\[\frac{ n }{ n+k } = \frac{ 1 }{ a + b } --> \frac{ n+k }{ n } = a + b --> 1 + \frac{ k }{ n } = a + b\] So . . . \[\frac{ n }{ n+k } = \frac{ 1 }{ 1 + \frac{ k }{ n } }\] Now the series becomes more manageable as: \[\lim_{n \rightarrow \infty} \frac{ 1 }{ n } \left( \frac{ 1 }{ \sqrt{1 + \frac{ 1 }{ n }} } + \frac{ 1 }{ \sqrt{1 + \frac{ 2 }{ n }} } + \frac{ 1 }{ \sqrt{1 + \frac{ 3 }{ n }} } + ... + \frac{ 1 }{ \sqrt{1 + \frac{ n }{ n }} } \right)\] Now I can imagine a function, f(x) = 1/sqrt(1 + x) divided into n partitions.
anonymous
  • anonymous
\[\lim_{n \rightarrow \infty} \frac{ 1 }{ n }\sum_{1}^{n}\left( f(\frac{ i }{ n }) \right), f(x) = \frac{ 1 }{ \sqrt{1+ x} }\]
anonymous
  • anonymous
\[\int\limits_{0}^{1}\frac{ 1 }{ \sqrt{1+x} }dx = 2(\sqrt{2}-1)\]
anonymous
  • anonymous
I'm pretty sure of it. I wonder if someone can verify. Wolframalpha does not evaluate infinite series as well as humans.
anonymous
  • anonymous
correct.......
anonymous
  • anonymous
Whew, thank you!
anonymous
  • anonymous
till generalising it was fine...........but actually didnt get your last step.....
anonymous
  • anonymous
how can u integrate.......?
anonymous
  • anonymous
\[\lim_{n \rightarrow \infty} \frac{ 1 }{ n }\sum_{i =1}^{n}\left( f(\frac{ i }{ n }) \right), f(x) = \frac{ 1 }{ \sqrt{1+ x} }\] \[f(x _{i})\] returns the ith element of the sum \[\frac{ 1 }{ n } = \Delta x\] This is our partition with b - a = 1, where a is the lower limit and b is the upper limit. Let a = 0 and b = 1, then 0 < 1/n < 2/n < ... < i/n < ... < (n-1)/n < b \[a = 0 < x _{1} = \frac{ 1 }{ n } < x _{2} = \frac{ 2 }{ n } < ... < x _{i} = \frac{ i }{ n }, ... < x _{n-1} = \frac{ n-1 }{ n } < 1 = b\] So all these points of the function are partitioned by 1/n. I think this represents a Riemann sum as \[\sum_{i = 1}^{n} f(x _{i}) \Delta x\] Which, as n approaches infinity, becomes the Reimann integral: \[\int\limits_{0}^{1} f(x) dx\] where \[f(x) = \frac{ 1 }{ \sqrt{1 + x} }\] Sorry if my explanation is bad. I was never good with summations.
anonymous
  • anonymous
ok.............right ........thanks
anonymous
  • anonymous
actually we had some other way of doing these questions

Looking for something else?

Not the answer you are looking for? Search for more explanations.