Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

\[\mathrm D^6\big(x^3e^{ax}\big)\]

  • one year ago
  • one year ago

  • This Question is Closed
  1. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{equation*}\mathrm D \equiv \frac{\mathrm d}{\mathrm dx}\end{equation*} \]

    • one year ago
  2. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \mathrm D^6\big(x^3e^{ax}\big)&\\ &=\mathrm D^5\big(3x^2+ax^3\big)e^{ax}\\ &=\mathrm D^4\big(6x+3ax^2+3ax^2+a^2x^3\big)e^{ax}\\ &=\mathrm D^4\big(6x+6ax^2+a^2x^3\big)e^{ax}\\ &=\mathrm D^3\big(6+12ax+3a^2x^2+6ax+6a^2x^2+a^3x^3\big)e^{ax}\\ &=\mathrm D^3\big(6+18ax+9a^2x^2+a^3x^3\big)e^{ax}\\ &=\mathrm D^2\big(18a+18a^2x+3a^3x^2+6a+18a^2x+9a^3x^2+a^4x^3\big)e^{ax}\\ &=\mathrm D^2\big(24a+36a^2x+12a^3x^2+a^4x^3\big)e^{ax}\\ &=\mathrm D\big(36a^2+24a^3x+3a^4x^2+24a^2+36a^3x+12a^4x^2+a^5x^3\big)e^{ax}\\ &=\mathrm D\big(60a^2+60a^3x+15a^4x^2+a^5x^3\big)e^{ax}\\ &=\big(60a^3+30a^4x+3a^5x^2+60a^3+60a^4x+15a^5x^2+a^6x^3\big)e^{ax}\\ &=\big(120a^3+90a^4x+18a^5x^2+a^6x^3\big)e^{ax}\\ &=\big(120+90ax+18a^2x^2+a^3x^3\big)a^3e^{ax}\\ \end{align*}\]

    • one year ago
  3. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    Is there an easier way to do this ?

    • one year ago
  4. hartnn
    Best Response
    You've already chosen the best response.
    Medals 0

    D is derivative operator ? can't u use general formula for \(D^n(x^me^{at})\)

    • one year ago
  5. hartnn
    Best Response
    You've already chosen the best response.
    Medals 0

    *ax

    • one year ago
  6. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\mathrm D^n(x^me^{ax})=?\]

    • one year ago
  7. hartnn
    Best Response
    You've already chosen the best response.
    Medals 0

    i thought there was general formula....but apparently there isn't xD

    • one year ago
  8. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    some thing with factorials !

    • one year ago
  9. hartnn
    Best Response
    You've already chosen the best response.
    Medals 0

    tried Leibnitz theorem ? \(D^n(uv)\)

    • one year ago
  10. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    what is that?

    • one year ago
  11. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    oh

    • one year ago
  12. hartnn
    Best Response
    You've already chosen the best response.
    Medals 0

    does that become easier ? i doubt :P

    • one year ago
  13. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[ D^6(x^3 e^{ax})=e^{ax}D^6(x^3)+6D^5(x^3)D(e^{ax}) +\cdots+6D(x^3)D^5(e^{ax})+x^3D^6(e^{ax})\]\[D^6x^3=0, \;D^5x^3=0,\; D^4x^3=0,\;D^3x^3=3!\]

    • one year ago
  14. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[D^2x^3=6x,\;Dx^3=3x^2,\;D^n(e^{ax})=a^ne^{ax}\]\[D^6(x^3e^{ax})=20(3!a^3e^{ax})+15(6xa^4e^{ax})+6(3x^2a^5e^{ax})+(x^3a^6e^{ax})\]it appears the solution is shorter

    • one year ago
  15. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1357054140625:dw| i guess Leibniz theorem is better.

    • one year ago
  16. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\cdot\]

    • one year ago
  17. mukushla
    Best Response
    You've already chosen the best response.
    Medals 1

    i miss beautiful problems like this these days :( lets see what we'll get with use of Leibniz\[(uv)^{(n)}=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)u^{(n-k)}v^k\]\[u=x^m\]\[v=e^{ax}\]so we have\[(x^m e^{ax})^{(n)}=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)(x^m)^{(n-k)}(e^{ax})^k=e^{ax} \sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)(x^m)^{(n-k)}(a)^k\]there is a little problem here

    • one year ago
  18. mukushla
    Best Response
    You've already chosen the best response.
    Medals 1

    if \(m=n-k\) \[(x^m)^{(n-k)}=m!\]if \(m>n-k\)\[(x^m)^{(n-k)}=m(m-1)(m-2)...(m-n+k+1)x^{n-k} \]ohhh this is hard to get !!!!

    • one year ago
  19. mukushla
    Best Response
    You've already chosen the best response.
    Medals 1

    btw maybe that will be a clue for someone :)

    • one year ago
  20. mukushla
    Best Response
    You've already chosen the best response.
    Medals 1

    also @TuringTest will like to try this

    • one year ago
  21. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\boxed{\frac{\mathrm d^n}{\mathrm dx^n}(f\cdot g)=\sum\limits_{k=0}^n\frac{n!}{k!(n-k)!}\cdot\frac{\mathrm d^kf}{\mathrm dx^k}\cdot\frac{\mathrm d^{n-k}g}{\mathrm dx^{n-k}}}\] \[\begin{align*} \mathrm D^6\big(x^3e^{ax}\big)&=\sum\limits_{k=0}^6\frac{6!}{k!(6-k)!}\cdot\frac{\mathrm d^k}{\mathrm dx^k}(x^3)\cdot\frac{\mathrm d^{6-k}}{\mathrm dx^{6-k}}(e^{ax})\\ &=6!\left(\frac{x^3a^6}{6!}+\frac{3x^2a^5}{5!}+\frac{6xa^4}{2!4!}+\frac{6a^3}{3!^2}+0+0+0\right)e^{ax}\\ %&=\left(x^3a^6+18x^2a^5+90xa^4+120a^3\right)e^{ax}\\ &=\left(x^3a^3+18x^2a^2+90xa+120\right)a^3e^{ax}\\ \end{align*}\] thankyou @hartnn @sirm3d @experimentX @mukushla

    • one year ago
  22. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    the formula reminds me of convolution

    • one year ago
  23. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \mathrm D^4\big(x^2\cos(2x)\big)\\ &=\sum\limits_{k=0}^4\frac{4!}{k!(4-k)!}\cdot\frac{\mathrm d^k(x^2)}{\mathrm dx^k}\cdot\frac{\mathrm d^{4-k}(\cos(2x))}{\mathrm dx^{4-k}}\\ &=4!\left(\frac{x^2\times16\cos(2x)}{4!}+\frac{2x\times8\sin(2x)}{3!}+\frac{2\times-4\cos(2x)}{2!^2}+0+0\right)\\ &=16x^2\cos(2x)+64x\sin(2x)-48\cos(2x) \end{align*}\]

    • one year ago
  24. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} &\mathrm D^4\big(e^{2x}\cos(3x)\big)&\\ &=\sum\limits_{k=0}^4\frac{4!}{k!(4-k)!}\cdot\frac{\mathrm d^k(e^{2x})}{\mathrm dx^k}\cdot\frac{\mathrm d^{4-k}(\cos(3x))}{\mathrm dx^{4-k}}\\ &=4!\left(\frac{e^{2x}\times81\cos(3x)}{4!}+\frac{2e^{2x}\times27\sin(3x)}{3!}+\frac{4e^{2x}\times-9\cos(3x)}{2!^2}\right.\\ &\qquad\qquad\qquad\qquad\left.+\frac{8e^{2x}\times-3\sin(3x)}{3!}+\frac{16e^{2x}\cos(3x)}{4!}\right)\\ &=81e^{2x}\cos(3x)+216e^{2x}\sin(3x)-216e^{2x}\cos(3x)-96e^{2x}\sin(3x)+16e^{2x}\cos(3x)\\ &=120e^{2x}\sin(3x)-119e^{2x}\cos(3x) \end{align*}\] woo!

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.