Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

\[\mathrm D^6\big(x^3e^{ax}\big)\]

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\begin{equation*}\mathrm D \equiv \frac{\mathrm d}{\mathrm dx}\end{equation*} \]
\[\begin{align*} \mathrm D^6\big(x^3e^{ax}\big)&\\ &=\mathrm D^5\big(3x^2+ax^3\big)e^{ax}\\ &=\mathrm D^4\big(6x+3ax^2+3ax^2+a^2x^3\big)e^{ax}\\ &=\mathrm D^4\big(6x+6ax^2+a^2x^3\big)e^{ax}\\ &=\mathrm D^3\big(6+12ax+3a^2x^2+6ax+6a^2x^2+a^3x^3\big)e^{ax}\\ &=\mathrm D^3\big(6+18ax+9a^2x^2+a^3x^3\big)e^{ax}\\ &=\mathrm D^2\big(18a+18a^2x+3a^3x^2+6a+18a^2x+9a^3x^2+a^4x^3\big)e^{ax}\\ &=\mathrm D^2\big(24a+36a^2x+12a^3x^2+a^4x^3\big)e^{ax}\\ &=\mathrm D\big(36a^2+24a^3x+3a^4x^2+24a^2+36a^3x+12a^4x^2+a^5x^3\big)e^{ax}\\ &=\mathrm D\big(60a^2+60a^3x+15a^4x^2+a^5x^3\big)e^{ax}\\ &=\big(60a^3+30a^4x+3a^5x^2+60a^3+60a^4x+15a^5x^2+a^6x^3\big)e^{ax}\\ &=\big(120a^3+90a^4x+18a^5x^2+a^6x^3\big)e^{ax}\\ &=\big(120+90ax+18a^2x^2+a^3x^3\big)a^3e^{ax}\\ \end{align*}\]
Is there an easier way to do this ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

D is derivative operator ? can't u use general formula for \(D^n(x^me^{at})\)
*ax
\[\mathrm D^n(x^me^{ax})=?\]
i thought there was general formula....but apparently there isn't xD
some thing with factorials !
tried Leibnitz theorem ? \(D^n(uv)\)
what is that?
https://docs.google.com/viewer?a=v&q=cache:9WaUs5ovMl8J:www.math.osu.edu/~nevai.1/H16x/DOCUMENTS/leibniz_product_formula_H6.pdf+&hl=en&gl=in&pid=bl&srcid=ADGEEShrDfDyJl8y40cSZzEHIU0yJcWw6JunzRb9a0fIS20lbReliJzWWroyHm2gc_YX4UUZ5J_bQaXUfaa1e80MB67e9UYKKMnKVVYQZmrG0G4oWkzj1wshx_2H4Pbh6HtYYhruMq2y&sig=AHIEtbTOMTfpYiFiWbXziBk9x2R7lGVEfA
oh
does that become easier ? i doubt :P
\[ D^6(x^3 e^{ax})=e^{ax}D^6(x^3)+6D^5(x^3)D(e^{ax}) +\cdots+6D(x^3)D^5(e^{ax})+x^3D^6(e^{ax})\]\[D^6x^3=0, \;D^5x^3=0,\; D^4x^3=0,\;D^3x^3=3!\]
\[D^2x^3=6x,\;Dx^3=3x^2,\;D^n(e^{ax})=a^ne^{ax}\]\[D^6(x^3e^{ax})=20(3!a^3e^{ax})+15(6xa^4e^{ax})+6(3x^2a^5e^{ax})+(x^3a^6e^{ax})\]it appears the solution is shorter
|dw:1357054140625:dw| i guess Leibniz theorem is better.
\[\cdot\]
i miss beautiful problems like this these days :( lets see what we'll get with use of Leibniz\[(uv)^{(n)}=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)u^{(n-k)}v^k\]\[u=x^m\]\[v=e^{ax}\]so we have\[(x^m e^{ax})^{(n)}=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)(x^m)^{(n-k)}(e^{ax})^k=e^{ax} \sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)(x^m)^{(n-k)}(a)^k\]there is a little problem here
if \(m=n-k\) \[(x^m)^{(n-k)}=m!\]if \(m>n-k\)\[(x^m)^{(n-k)}=m(m-1)(m-2)...(m-n+k+1)x^{n-k} \]ohhh this is hard to get !!!!
btw maybe that will be a clue for someone :)
also @TuringTest will like to try this
\[\boxed{\frac{\mathrm d^n}{\mathrm dx^n}(f\cdot g)=\sum\limits_{k=0}^n\frac{n!}{k!(n-k)!}\cdot\frac{\mathrm d^kf}{\mathrm dx^k}\cdot\frac{\mathrm d^{n-k}g}{\mathrm dx^{n-k}}}\] \[\begin{align*} \mathrm D^6\big(x^3e^{ax}\big)&=\sum\limits_{k=0}^6\frac{6!}{k!(6-k)!}\cdot\frac{\mathrm d^k}{\mathrm dx^k}(x^3)\cdot\frac{\mathrm d^{6-k}}{\mathrm dx^{6-k}}(e^{ax})\\ &=6!\left(\frac{x^3a^6}{6!}+\frac{3x^2a^5}{5!}+\frac{6xa^4}{2!4!}+\frac{6a^3}{3!^2}+0+0+0\right)e^{ax}\\ %&=\left(x^3a^6+18x^2a^5+90xa^4+120a^3\right)e^{ax}\\ &=\left(x^3a^3+18x^2a^2+90xa+120\right)a^3e^{ax}\\ \end{align*}\] thankyou @hartnn @sirm3d @experimentX @mukushla
the formula reminds me of convolution
\[\begin{align*} \mathrm D^4\big(x^2\cos(2x)\big)\\ &=\sum\limits_{k=0}^4\frac{4!}{k!(4-k)!}\cdot\frac{\mathrm d^k(x^2)}{\mathrm dx^k}\cdot\frac{\mathrm d^{4-k}(\cos(2x))}{\mathrm dx^{4-k}}\\ &=4!\left(\frac{x^2\times16\cos(2x)}{4!}+\frac{2x\times8\sin(2x)}{3!}+\frac{2\times-4\cos(2x)}{2!^2}+0+0\right)\\ &=16x^2\cos(2x)+64x\sin(2x)-48\cos(2x) \end{align*}\]
\[\begin{align*} &\mathrm D^4\big(e^{2x}\cos(3x)\big)&\\ &=\sum\limits_{k=0}^4\frac{4!}{k!(4-k)!}\cdot\frac{\mathrm d^k(e^{2x})}{\mathrm dx^k}\cdot\frac{\mathrm d^{4-k}(\cos(3x))}{\mathrm dx^{4-k}}\\ &=4!\left(\frac{e^{2x}\times81\cos(3x)}{4!}+\frac{2e^{2x}\times27\sin(3x)}{3!}+\frac{4e^{2x}\times-9\cos(3x)}{2!^2}\right.\\ &\qquad\qquad\qquad\qquad\left.+\frac{8e^{2x}\times-3\sin(3x)}{3!}+\frac{16e^{2x}\cos(3x)}{4!}\right)\\ &=81e^{2x}\cos(3x)+216e^{2x}\sin(3x)-216e^{2x}\cos(3x)-96e^{2x}\sin(3x)+16e^{2x}\cos(3x)\\ &=120e^{2x}\sin(3x)-119e^{2x}\cos(3x) \end{align*}\] woo!

Not the answer you are looking for?

Search for more explanations.

Ask your own question