Quantcast

A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

\[\mathrm D^6\big(x^3e^{ax}\big)\]

  • This Question is Closed
  1. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{equation*}\mathrm D \equiv \frac{\mathrm d}{\mathrm dx}\end{equation*} \]

  2. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \mathrm D^6\big(x^3e^{ax}\big)&\\ &=\mathrm D^5\big(3x^2+ax^3\big)e^{ax}\\ &=\mathrm D^4\big(6x+3ax^2+3ax^2+a^2x^3\big)e^{ax}\\ &=\mathrm D^4\big(6x+6ax^2+a^2x^3\big)e^{ax}\\ &=\mathrm D^3\big(6+12ax+3a^2x^2+6ax+6a^2x^2+a^3x^3\big)e^{ax}\\ &=\mathrm D^3\big(6+18ax+9a^2x^2+a^3x^3\big)e^{ax}\\ &=\mathrm D^2\big(18a+18a^2x+3a^3x^2+6a+18a^2x+9a^3x^2+a^4x^3\big)e^{ax}\\ &=\mathrm D^2\big(24a+36a^2x+12a^3x^2+a^4x^3\big)e^{ax}\\ &=\mathrm D\big(36a^2+24a^3x+3a^4x^2+24a^2+36a^3x+12a^4x^2+a^5x^3\big)e^{ax}\\ &=\mathrm D\big(60a^2+60a^3x+15a^4x^2+a^5x^3\big)e^{ax}\\ &=\big(60a^3+30a^4x+3a^5x^2+60a^3+60a^4x+15a^5x^2+a^6x^3\big)e^{ax}\\ &=\big(120a^3+90a^4x+18a^5x^2+a^6x^3\big)e^{ax}\\ &=\big(120+90ax+18a^2x^2+a^3x^3\big)a^3e^{ax}\\ \end{align*}\]

  3. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Is there an easier way to do this ?

  4. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    D is derivative operator ? can't u use general formula for \(D^n(x^me^{at})\)

  5. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    *ax

  6. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\mathrm D^n(x^me^{ax})=?\]

  7. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    i thought there was general formula....but apparently there isn't xD

  8. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    some thing with factorials !

  9. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    tried Leibnitz theorem ? \(D^n(uv)\)

  10. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    what is that?

  11. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    oh

  12. hartnn
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    does that become easier ? i doubt :P

  13. sirm3d
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[ D^6(x^3 e^{ax})=e^{ax}D^6(x^3)+6D^5(x^3)D(e^{ax}) +\cdots+6D(x^3)D^5(e^{ax})+x^3D^6(e^{ax})\]\[D^6x^3=0, \;D^5x^3=0,\; D^4x^3=0,\;D^3x^3=3!\]

  14. sirm3d
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[D^2x^3=6x,\;Dx^3=3x^2,\;D^n(e^{ax})=a^ne^{ax}\]\[D^6(x^3e^{ax})=20(3!a^3e^{ax})+15(6xa^4e^{ax})+6(3x^2a^5e^{ax})+(x^3a^6e^{ax})\]it appears the solution is shorter

  15. experimentX
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1357054140625:dw| i guess Leibniz theorem is better.

  16. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\cdot\]

  17. mukushla
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    i miss beautiful problems like this these days :( lets see what we'll get with use of Leibniz\[(uv)^{(n)}=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)u^{(n-k)}v^k\]\[u=x^m\]\[v=e^{ax}\]so we have\[(x^m e^{ax})^{(n)}=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)(x^m)^{(n-k)}(e^{ax})^k=e^{ax} \sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)(x^m)^{(n-k)}(a)^k\]there is a little problem here

  18. mukushla
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    if \(m=n-k\) \[(x^m)^{(n-k)}=m!\]if \(m>n-k\)\[(x^m)^{(n-k)}=m(m-1)(m-2)...(m-n+k+1)x^{n-k} \]ohhh this is hard to get !!!!

  19. mukushla
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    btw maybe that will be a clue for someone :)

  20. mukushla
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    also @TuringTest will like to try this

  21. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\boxed{\frac{\mathrm d^n}{\mathrm dx^n}(f\cdot g)=\sum\limits_{k=0}^n\frac{n!}{k!(n-k)!}\cdot\frac{\mathrm d^kf}{\mathrm dx^k}\cdot\frac{\mathrm d^{n-k}g}{\mathrm dx^{n-k}}}\] \[\begin{align*} \mathrm D^6\big(x^3e^{ax}\big)&=\sum\limits_{k=0}^6\frac{6!}{k!(6-k)!}\cdot\frac{\mathrm d^k}{\mathrm dx^k}(x^3)\cdot\frac{\mathrm d^{6-k}}{\mathrm dx^{6-k}}(e^{ax})\\ &=6!\left(\frac{x^3a^6}{6!}+\frac{3x^2a^5}{5!}+\frac{6xa^4}{2!4!}+\frac{6a^3}{3!^2}+0+0+0\right)e^{ax}\\ %&=\left(x^3a^6+18x^2a^5+90xa^4+120a^3\right)e^{ax}\\ &=\left(x^3a^3+18x^2a^2+90xa+120\right)a^3e^{ax}\\ \end{align*}\] thankyou @hartnn @sirm3d @experimentX @mukushla

  22. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    the formula reminds me of convolution

  23. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} \mathrm D^4\big(x^2\cos(2x)\big)\\ &=\sum\limits_{k=0}^4\frac{4!}{k!(4-k)!}\cdot\frac{\mathrm d^k(x^2)}{\mathrm dx^k}\cdot\frac{\mathrm d^{4-k}(\cos(2x))}{\mathrm dx^{4-k}}\\ &=4!\left(\frac{x^2\times16\cos(2x)}{4!}+\frac{2x\times8\sin(2x)}{3!}+\frac{2\times-4\cos(2x)}{2!^2}+0+0\right)\\ &=16x^2\cos(2x)+64x\sin(2x)-48\cos(2x) \end{align*}\]

  24. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} &\mathrm D^4\big(e^{2x}\cos(3x)\big)&\\ &=\sum\limits_{k=0}^4\frac{4!}{k!(4-k)!}\cdot\frac{\mathrm d^k(e^{2x})}{\mathrm dx^k}\cdot\frac{\mathrm d^{4-k}(\cos(3x))}{\mathrm dx^{4-k}}\\ &=4!\left(\frac{e^{2x}\times81\cos(3x)}{4!}+\frac{2e^{2x}\times27\sin(3x)}{3!}+\frac{4e^{2x}\times-9\cos(3x)}{2!^2}\right.\\ &\qquad\qquad\qquad\qquad\left.+\frac{8e^{2x}\times-3\sin(3x)}{3!}+\frac{16e^{2x}\cos(3x)}{4!}\right)\\ &=81e^{2x}\cos(3x)+216e^{2x}\sin(3x)-216e^{2x}\cos(3x)-96e^{2x}\sin(3x)+16e^{2x}\cos(3x)\\ &=120e^{2x}\sin(3x)-119e^{2x}\cos(3x) \end{align*}\] woo!

  25. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.