anonymous
  • anonymous
How many equivalence relations are there in a set of n elements...?
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

KingGeorge
  • KingGeorge
Have you learned much about set partitions?
anonymous
  • anonymous
i think this is not easy it is identical to asking how many partitions there are. maybe i am mistaken, but i don't think this has an obvious answer
anonymous
  • anonymous
a quick google search finds these are bell numbers https://oeis.org/A000110

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
or scroll down to "counting possible partitions" here http://en.wikipedia.org/wiki/Equivalence_relation
KingGeorge
  • KingGeorge
It's actually rather straightforward to figure this out. You can make a bijection between the set of set partitions and the set of equivalence relations on a set of n elements by equating partitions to equivalence classes.
KingGeorge
  • KingGeorge
To prove this is actually a bijection, just notice that it has an easy inverse (either way you go, just relabel set partitions as equivalence classes and vice versa). Thus, since it has an inverse, it must be bijective.
anonymous
  • anonymous
ok, but how do you count them?
KingGeorge
  • KingGeorge
Well, that's a different story.

Looking for something else?

Not the answer you are looking for? Search for more explanations.