ksaimouli
  • ksaimouli
integratebb
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
3siny sqtcosy dy
ksaimouli
  • ksaimouli
\[\int\limits_{}^{}3\sin y \sqrt{cosy} \]
anonymous
  • anonymous
substitute u = cos(y), du = -sin(y) dy

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
yup i did i am getting \[-3\sqrt{cosy}\]
anonymous
  • anonymous
but cos(y) is u.
anonymous
  • anonymous
\[ \int -3\sqrt{u} du \]is a pretty easy integral.
ksaimouli
  • ksaimouli
|dw:1357088383865:dw|
ksaimouli
  • ksaimouli
see i am getting <-3 {sqrtcosy}/>
ksaimouli
  • ksaimouli
\[-3 {\sqrt cosy}\]
anonymous
  • anonymous
I reiterate that cos(y) is just u.
anonymous
  • anonymous
so that is -3 sqrt(u)
ksaimouli
  • ksaimouli
yes thats what i did -3 sqrt(u) and before we said u=cosx so i rewrote it back
ksaimouli
  • ksaimouli
is that right answer for this question 3siny sqtcosy dy
anonymous
  • anonymous
No. After your substitution the integral becomes \[ \int -3 \sqrt{u} du\] you need to integrate this, which you should be able to do in two seconds. Then, you can replace all the u's with cos(y)'s and then you'll be done.
MrDoe
  • MrDoe
jemurray3 is correct, just think of the square root as u^1/2 i think thats what your having trouble with
ksaimouli
  • ksaimouli
-2u^(3/2)
ksaimouli
  • ksaimouli
thx

Looking for something else?

Not the answer you are looking for? Search for more explanations.