anonymous
  • anonymous
How do you find the determinant of a 4x4 matrix?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
geerky42
  • geerky42
http://lmgtfy.com/?q=How+do+you+find+the+determinant+of+a+3x3+matrix%3F
anonymous
  • anonymous
I didnt get you.
anonymous
  • anonymous
Do you have a graphing calculator? If so you can input the matrix and the calculator can sovle for the determinant.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

geerky42
  • geerky42
You edited your question... Just Google it or do what @novagirl114 said. http://lmgtfy.com/?q=How+do+you+find+the+determinant+of+a+4x4+matrix%3F
anonymous
  • anonymous
Cofactor expansion. The same way you do 3x3's. If you have: \[A=\left[\begin{matrix}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31}&a_{32}&a_{33}\end{matrix}\right]\] Then: \[\det(A)=a_{11} \det \left[\begin{matrix}a_{22} & a_{23} \\ a_{32} & a_{33}\end{matrix}\right]-a_{12} \det \left[\begin{matrix}a_{21} & a_{23} \\ a_{31} & a_{33}\end{matrix}\right]+a_{13} \det \left[\begin{matrix}a_{21} & a_{22} \\ a_{31} & a_{32}\end{matrix}\right]\] Better notation is my opinion for an nxn matrix is: \[\det(A)=\sum_{i_1,i_2,...,i_n} \epsilon_{i_1,i_2,...,i_n}a_{1,i_1}a_{2,i_2}...a_{n,i_n}\] Where epsilon is the Levi Cevita tensor.
anonymous
  • anonymous
But the only difference for a 4x4 is that the "sub determinants" (i.e., my determinants of 2x2's) will be THREE BY THREES! So you'll need to do a cofactor expansion to get 4, 3x3 determinants and then 4 cofactor expansions to get 3,2x2 determinants for EACH sub determinant.

Looking for something else?

Not the answer you are looking for? Search for more explanations.