3psilon
  • 3psilon
Dad dreamed that he put $1 on the first square,$2 on the second, $4 dollars on the third, and so on, doubling the amount each time.If it costs $65,535 to cover all the squares,how many squares were in Dad's dream?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[1+2+2^2+2^3+...+2^{n-1}=2^n-65535\]
anonymous
  • anonymous
oops i mean \[=2^n-1=65535\]
3psilon
  • 3psilon
My book says there are 16 squares but only 1 covered ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes there are 16
anonymous
  • anonymous
\[2^n-1=65535\] \[2^n=65526\] and \[2^{16}=65536\]
anonymous
  • anonymous
another typo, \(2^n=65536\)
anonymous
  • anonymous
It's a geometric series, right? So in general we use: \[ \Large \sum_{i=0}^{n-1}a_0r^i = a_0\frac{1-r^n}{1-r} \]
anonymous
  • anonymous
Where \(a_0 = 1\) and \(r=2\)...
anonymous
  • anonymous
65535 = 2^16 - 1 --> 16 squares

Looking for something else?

Not the answer you are looking for? Search for more explanations.