gorica
  • gorica
I need help in finding inverse Laplace transformation of e^(-5s)/(2s^2+s+2)
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
still need help ?
gorica
  • gorica
yes
hartnn
  • hartnn
do you know the identity \(\huge L^{-1}[e^{-as}F(s)]=f(t-a)u(t-a)\) ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

gorica
  • gorica
yes
hartnn
  • hartnn
so, you first need laplace inverse of 1/(2s^2+s+2) right ?
gorica
  • gorica
yes, I think I have it.
hartnn
  • hartnn
ohh...so you were able to find laplace inverse of 1/(2s^2+s+2) ??
gorica
  • gorica
yes. It's this \[\frac{ 2 }{ \sqrt{15} }e ^{-t/4}\sin(\frac{ \sqrt{15} }{ 4 }t)\]
gorica
  • gorica
I hope :D
sirm3d
  • sirm3d
\[\checkmark\]
gorica
  • gorica
and this is where I don't know what to do next
hartnn
  • hartnn
yes, thats correct, now just replace, t by 't-5' and add u(t-5) in the end. using that formula....
hartnn
  • hartnn
\(\huge \frac{ 2 }{ \sqrt{15} }e ^{(-t+5)/4}\sin(\frac{ \sqrt{15} }{ 4 }(t-5))u(t-5)\)
gorica
  • gorica
thank you :)
hartnn
  • hartnn
welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.