hawkfalcon
  • hawkfalcon
if dy/dx =x^2 y^2 then d^2y/dx^2=?
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

hawkfalcon
  • hawkfalcon
So \[\frac{ dy }{dx }(x^2y^2)\]
hawkfalcon
  • hawkfalcon
Which I get to be -2x^2y/2xy^2 but thats not an option...
anonymous
  • anonymous
\[ \Large \begin{array}{rcl} \frac{dx}{dx} &=&x^2 y^2 \\ \frac{dx}{dx} \left(\frac{dx}{dx}\right) &=& \frac{dx}{dx} (x^2 y^2) \\ \frac{d^2y}{dx^2} &=& (2x)y^2 + x^2\left (2y\frac{dy}{dx} \right) \\ \frac{d^2y}{dx^2} &=& 2xy^2 + 2x^2y(x^2y^2 ) \\ \frac{d^2y}{dx^2} &=& 2xy^2 + 2x^4y^3 \end{array} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hawkfalcon
  • hawkfalcon
Oh so I can replace dy/dx with the original function?
hawkfalcon
  • hawkfalcon
Cool! Thanks!
anonymous
  • anonymous
In general, when you have an equation, the left and side and right hand side can always be substituted. The exception is when you're trying to prove the equation is true.

Looking for something else?

Not the answer you are looking for? Search for more explanations.