anonymous
  • anonymous
Can the endpoints of a function be a local/absolute maximum/minimum?
Precalculus
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Consider the function \[f(x) = \sqrt{x}\] Or an arbitrary function of your choice. Any point can be a local min or max, or a global min or max.
anonymous
  • anonymous
After some research I will retract what I said. Endpoints can be global but not local because of the way local extrema is defined. There would have to be a neighborhood around a point in order for it to be considered a local minimum or maximum. So end points can be global extrema but not local ones.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.