richyw
  • richyw
Given \( \mathbf{x,y}\in\mathbb{R}^n\) show that \[|\mathbf{x}+\mathbf{y}|^2=|\mathbf{x}|^2+2\mathbf{x}\cdot\mathbf{y}+|\mathbf{y}|^2\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
richyw
  • richyw
I have no idea how to "show" this. it just seems obvious to me?
abb0t
  • abb0t
I think that's dot product.
richyw
  • richyw
it is. the dots are dot products and the bold are vectors

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
It's not a true statement, is it?
anonymous
  • anonymous
Pick x=(1,0), y=(0,1): 0=\=1+0+1
richyw
  • richyw
oops! you caught a mistake. i'll change it. sorry!
richyw
  • richyw
it's now edited in the original question. Now you can see why I said it "seems" obvious to me. still don't know how to show it!
anonymous
  • anonymous
I think it's easiest to do use the components of the vectors: \[(x+y)^2=(x_1+y_1)^2+...+(x_n+y_n)^2=...\] Now write out the squares, group the terms differently and go back to vectors again.
anonymous
  • anonymous
\[|x+y|^2=(x_1+y_1)^2+...+(x_n+y_n)^2=...\] that is.
ZeHanz
  • ZeHanz
It looks more difficult than it is... Just do what Thomas9 says: (I prefer sigma-notation instead of ...)\[|\overline x \cdot \overline y|^2=\sum_{i=1}^{n}(x_i+y_i)^2=\sum_{i=1}^{n}(x_i^2+2x_iy_i+y_i^2)=\]\[\sum_{i=1}^{n}x_i^2+2\sum_{i=1}^{n}x_iy_y+\sum_{i=1}^{n}y_i^2=|\overline x|^2+2 \overline x \overline y + |\overline y|^2\]
anonymous
  • anonymous
The easiest way to show this is to use the fact that for any vector x:\[|x|^2=x\cdot x\]and the fact that the dot product has bilinear properties (it has two slots, and it is linear in each slot). By linear, i mean, \[\forall x,y,z\in \mathbb {R}^n,\forall \lambda\in \mathbb{R}\]\[(\lambda x+y)\cdot z=\lambda (x\cdot z)+(y\cdot z)\] Using these two properties, you can take the expression:\[|x+y|^2\]and change it to the desired equation.
anonymous
  • anonymous
\[|x+y|^2=(x+y)\cdot (x+y)\]Using linearity in the "first slot":\[(x+y)\cdot (x+y)=\left(x\cdot(x+y)\right)+\left(y\cdot (x+y)\right)\]Now we use linearity on the second slot on both terms:\[\left(x\cdot(x+y)\right)+\left(y\cdot (x+y)\right)=(x\cdot x)+(x\cdot y)+(y\cdot x) +(y\cdot y)\] Since the dot product is symmetric, x*y = y*x, so we end up with 2(x*y) in the middle, and from earlier, we note that:\[x\cdot x = |x|^2\]So we get: \[|x|^2+2(x\cdot y)+|y|^2\]
richyw
  • richyw
thanks everyone. looks like i've got a lot of stuff to learn!

Looking for something else?

Not the answer you are looking for? Search for more explanations.