Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

Show that the function satisfies the DE

  • one year ago
  • one year ago

  • This Question is Closed
  1. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    • one year ago
    1 Attachment
  2. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} I(a)&=\int\limits_0^\infty e^{-u^2}\cos(au)\mathrm du\\ \frac{\mathrm dI(a)}{\mathrm da}&=\int\limits_0^\infty \frac{\partial}{\partial a}e^{-u^2}\cos(au)\mathrm du\\ &=-a\int\limits_0^\infty e^{-u^2}\sin(au)\mathrm du\\ \\ \end{align*}\]

    • one year ago
  3. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    now what should i do ?

    • one year ago
  4. BAdhi
    Best Response
    You've already chosen the best response.
    Medals 7

    firstly $$\frac{dI}{da}=\int\limits_{0}^{\infty}-ue^{-u^2}\sin(au)du$$ when we consider the left side of the differential equation, $$\begin{align*}2\frac{dI}{da}+aI &= \int\limits_{0}^{\infty}(-2u)e^{-u^2}\sin(au)du+\int \limits_{0}^{\infty}e^{-u^2}a\cos(au)du\\ &=\int\limits_0^\infty\frac{de^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\sin(au)}{du}du\\ &=\int \limits_0^\infty \frac{d\,e^{-u^2}\sin(au)}{du}\,du\\ &=\int\limits_0^\infty d\,e^{-u^2}\sin(au)\\ &=\left[e^{-u^2}\sin(au)\right]_0^{\infty}=0-0=0 \end{align*}$$

    • one year ago
  5. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    some kinda reverse integration by parts?

    • one year ago
  6. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    im not quite sure how you got your third line

    • one year ago
  7. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    can you explain how you got from \[\begin{align*} \int\limits_{0}^{\infty}(-2u)e^{-u^2}\sin(au)du+\int \limits_{0}^{\infty}e^{-u^2}a\cos(au)du\\ \text {to}\\ =\int\limits_0^\infty\frac{de^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\sin(au)}{du}du\end{align*}\] @BAdhi

    • one year ago
  8. BAdhi
    Best Response
    You've already chosen the best response.
    Medals 7

    we know that $$\frac{d\,e^{-u^2}}{du}=(-2u)\,e^{-u^2}$$ and $$\frac{d\,\sin(au)}{du}=a\cos(au)$$ so, $$\begin{align*}\int\limits_0^\infty (-2u)\,e^{-u^2}\sin(au)\,du+\int\limits_0^\infty e^{-u^2}a\cos(au)\,du&=\int\limits_0^\infty \frac{d\,e^{-u^2}}{du}\sin(au)\,du+\int\limits_0^\infty e^{-u^2}\frac{d\,\sin(au)}{du}\,du\\ &=\int\limits_0^\infty \underbrace{\frac{d\,e^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\,\sin(au)}{du}}_{(1)}\,du\end{align*}$$ (1) can be reduced from the differentiation of a multiplication, property (i.e.) $$\frac{d\,uv}{dx}=u\frac{du}{dx}+v\frac{dv}{dx}$$ $$\frac{d\,\left(e^{-u^2}\sin(au)\right)}{du}=\frac{d\,e^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\,\sin(au)}{du}$$ (1) can be replaced with this, $$\begin{align*}\int\limits_0^\infty (-2u)\,e^{-u^2}\sin(au)\,du+\int\limits_0^\infty e^{-u^2}a\cos(au)\,du&=\int\limits_0^\infty \frac{d\,e^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\,\sin(au)}{du}\,du \\ &=\int\limits_0^\infty\frac{d\,\left(e^{-u^2}\sin(au)\right)}{du}du\end{align*}$$ Is it clear enough for you?

    • one year ago
  9. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    yes

    • one year ago
  10. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} 2\frac{\mathrm dI(a)}{\mathrm da}+aI(a) &=\int\limits_0^\infty -2ue^{-u^2}\sin(au)\mathrm du+\int\limits_0^\infty ae^{-u^2}\cos(au)\mathrm du\\ &=\int\limits_0^\infty\frac{\mathrm d }{\mathrm d u}\left(e^{-u^2}\sin(au)\right)\mathrm du\qquad\text{(using the product rule)}\\ &=\left.e^{-u^2}\sin(au)\right|_0^\infty\\ &=0 \end{align*}\]

    • one year ago
  11. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} I(a)&=\int\limits_0^\infty e^{-u^2}\cos(au)\,\mathrm du\\ I(0)&=\int\limits_0^\infty e^{-u^2}\,\mathrm du\\ \frac{\sqrt \pi}2&=\int\limits_0^\infty e^{-u^2}\,\mathrm du\\ \text{let }u=v^{1/2}\\ \mathrm du=\frac{v^{-1/2}}2\,\mathrm dv\\ \frac{\sqrt \pi}2&=\int\limits_0^\infty e^{-v}\frac{v^{-1/2}\,\mathrm dv}2\\ {\sqrt \pi}&=\int\limits_0^\infty {v^{-1/2}e^{-v}\,\mathrm dv}\\ {\sqrt \pi}&=\Gamma(\tfrac12)\\ \end{align*}\]

    • one year ago
  12. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    im not sure what they mean by an expression for \(I(a)\)

    • one year ago
  13. Sepeario
    Best Response
    You've already chosen the best response.
    Medals 0

    http://mathhelpforum.com/calculus/197830-how-show-function-satisfies-differential-equation.html

    • one year ago
  14. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    @Sepeario yes i have tried differentiating \(I(a)\)

    • one year ago
  15. rahul91
    Best Response
    You've already chosen the best response.
    Medals 0

    @UnkleRhaukus integrate the expression using integration by parts technique.then subst for I(0).

    • one year ago
  16. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} I(a)&=\int\limits_0^\infty e^{-u^2}\cos(au)\,\mathrm du\\ \text{let }u=v^{1/2}\\ \mathrm du=\frac{v^{-1/2}}2\,\mathrm dv\\ I(a)&=\int\limits_0^\infty e^{-v}\cos(a\sqrt v)\frac{v^{-1/2}\,\mathrm dv}2\\ \end{align*}\] how do i integrate by parts, there are three terms? do i break up the cos into e^... bits?

    • one year ago
  17. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[2\frac{ dI }{ da }+aI=0\\2 \frac{ dI }{ I }+a\space da=0\\2lnI+\frac{ a^2 }{ 2 }=C\]when \(\displaystyle a=0,\;I=\frac{\sqrt{\pi}}{2}\)\[2\ln \frac{ \sqrt{\pi} }{ 2 }+\frac{ 0^2 }{ 2 }=C\]\[2\ln I+\frac{a^2}{2}=2\ln\frac{\sqrt{\pi}}{2}\]\[\vdots\\\ln \left[\frac{ 4 }{ \pi }I^2(a)\right]=-\frac{ a^2 }{ 2 }\\I^2(a)=\frac{\pi}{4}\exp(-a^2/2)\]

    • one year ago
  18. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    Thankyou @sirm3d & @BAdhi \[\begin{align*} 2\frac{\mathrm dI(a)}{\mathrm da}+aI(a)&=0\\ 2\frac{\mathrm dI(a)}{I(a)}+a\,\mathrm da&=0\\ 2\int\frac{\mathrm dI(a)}{I(a)}+\int a\,\mathrm da&=0\\ 2\ln |I(a)|+\frac{a^2}2&=c \end{align*}\] \[\begin{align*} 2\ln |I(0)|&=c\\ 2\ln\frac{\sqrt\pi}2&=c\\ \ln\frac{\pi}4&=c\end{align*}\] \[\begin{align*} 2\ln |I(a)|+\frac{a^2}2&=\ln\frac{\pi}4\\ \ln |I(a)|&=\ln{\frac{\sqrt\pi}2}-\frac{a^2}4\\ I(a)&={\frac{\sqrt\pi}2}e^{-\frac{a^2}4} \end{align*} \]

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.