Quantcast

A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

Show that the function satisfies the DE

  • This Question is Closed
  1. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    1 Attachment
  2. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} I(a)&=\int\limits_0^\infty e^{-u^2}\cos(au)\mathrm du\\ \frac{\mathrm dI(a)}{\mathrm da}&=\int\limits_0^\infty \frac{\partial}{\partial a}e^{-u^2}\cos(au)\mathrm du\\ &=-a\int\limits_0^\infty e^{-u^2}\sin(au)\mathrm du\\ \\ \end{align*}\]

  3. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    now what should i do ?

  4. BAdhi
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 7

    firstly $$\frac{dI}{da}=\int\limits_{0}^{\infty}-ue^{-u^2}\sin(au)du$$ when we consider the left side of the differential equation, $$\begin{align*}2\frac{dI}{da}+aI &= \int\limits_{0}^{\infty}(-2u)e^{-u^2}\sin(au)du+\int \limits_{0}^{\infty}e^{-u^2}a\cos(au)du\\ &=\int\limits_0^\infty\frac{de^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\sin(au)}{du}du\\ &=\int \limits_0^\infty \frac{d\,e^{-u^2}\sin(au)}{du}\,du\\ &=\int\limits_0^\infty d\,e^{-u^2}\sin(au)\\ &=\left[e^{-u^2}\sin(au)\right]_0^{\infty}=0-0=0 \end{align*}$$

  5. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    some kinda reverse integration by parts?

  6. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    im not quite sure how you got your third line

  7. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    can you explain how you got from \[\begin{align*} \int\limits_{0}^{\infty}(-2u)e^{-u^2}\sin(au)du+\int \limits_{0}^{\infty}e^{-u^2}a\cos(au)du\\ \text {to}\\ =\int\limits_0^\infty\frac{de^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\sin(au)}{du}du\end{align*}\] @BAdhi

  8. BAdhi
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 7

    we know that $$\frac{d\,e^{-u^2}}{du}=(-2u)\,e^{-u^2}$$ and $$\frac{d\,\sin(au)}{du}=a\cos(au)$$ so, $$\begin{align*}\int\limits_0^\infty (-2u)\,e^{-u^2}\sin(au)\,du+\int\limits_0^\infty e^{-u^2}a\cos(au)\,du&=\int\limits_0^\infty \frac{d\,e^{-u^2}}{du}\sin(au)\,du+\int\limits_0^\infty e^{-u^2}\frac{d\,\sin(au)}{du}\,du\\ &=\int\limits_0^\infty \underbrace{\frac{d\,e^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\,\sin(au)}{du}}_{(1)}\,du\end{align*}$$ (1) can be reduced from the differentiation of a multiplication, property (i.e.) $$\frac{d\,uv}{dx}=u\frac{du}{dx}+v\frac{dv}{dx}$$ $$\frac{d\,\left(e^{-u^2}\sin(au)\right)}{du}=\frac{d\,e^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\,\sin(au)}{du}$$ (1) can be replaced with this, $$\begin{align*}\int\limits_0^\infty (-2u)\,e^{-u^2}\sin(au)\,du+\int\limits_0^\infty e^{-u^2}a\cos(au)\,du&=\int\limits_0^\infty \frac{d\,e^{-u^2}}{du}\sin(au)+ e^{-u^2}\frac{d\,\sin(au)}{du}\,du \\ &=\int\limits_0^\infty\frac{d\,\left(e^{-u^2}\sin(au)\right)}{du}du\end{align*}$$ Is it clear enough for you?

  9. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    yes

  10. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} 2\frac{\mathrm dI(a)}{\mathrm da}+aI(a) &=\int\limits_0^\infty -2ue^{-u^2}\sin(au)\mathrm du+\int\limits_0^\infty ae^{-u^2}\cos(au)\mathrm du\\ &=\int\limits_0^\infty\frac{\mathrm d }{\mathrm d u}\left(e^{-u^2}\sin(au)\right)\mathrm du\qquad\text{(using the product rule)}\\ &=\left.e^{-u^2}\sin(au)\right|_0^\infty\\ &=0 \end{align*}\]

  11. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} I(a)&=\int\limits_0^\infty e^{-u^2}\cos(au)\,\mathrm du\\ I(0)&=\int\limits_0^\infty e^{-u^2}\,\mathrm du\\ \frac{\sqrt \pi}2&=\int\limits_0^\infty e^{-u^2}\,\mathrm du\\ \text{let }u=v^{1/2}\\ \mathrm du=\frac{v^{-1/2}}2\,\mathrm dv\\ \frac{\sqrt \pi}2&=\int\limits_0^\infty e^{-v}\frac{v^{-1/2}\,\mathrm dv}2\\ {\sqrt \pi}&=\int\limits_0^\infty {v^{-1/2}e^{-v}\,\mathrm dv}\\ {\sqrt \pi}&=\Gamma(\tfrac12)\\ \end{align*}\]

  12. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    im not sure what they mean by an expression for \(I(a)\)

  13. Sepeario
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    http://mathhelpforum.com/calculus/197830-how-show-function-satisfies-differential-equation.html

  14. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    @Sepeario yes i have tried differentiating \(I(a)\)

  15. rahul91
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    @UnkleRhaukus integrate the expression using integration by parts technique.then subst for I(0).

  16. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} I(a)&=\int\limits_0^\infty e^{-u^2}\cos(au)\,\mathrm du\\ \text{let }u=v^{1/2}\\ \mathrm du=\frac{v^{-1/2}}2\,\mathrm dv\\ I(a)&=\int\limits_0^\infty e^{-v}\cos(a\sqrt v)\frac{v^{-1/2}\,\mathrm dv}2\\ \end{align*}\] how do i integrate by parts, there are three terms? do i break up the cos into e^... bits?

  17. sirm3d
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[2\frac{ dI }{ da }+aI=0\\2 \frac{ dI }{ I }+a\space da=0\\2lnI+\frac{ a^2 }{ 2 }=C\]when \(\displaystyle a=0,\;I=\frac{\sqrt{\pi}}{2}\)\[2\ln \frac{ \sqrt{\pi} }{ 2 }+\frac{ 0^2 }{ 2 }=C\]\[2\ln I+\frac{a^2}{2}=2\ln\frac{\sqrt{\pi}}{2}\]\[\vdots\\\ln \left[\frac{ 4 }{ \pi }I^2(a)\right]=-\frac{ a^2 }{ 2 }\\I^2(a)=\frac{\pi}{4}\exp(-a^2/2)\]

  18. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thankyou @sirm3d & @BAdhi \[\begin{align*} 2\frac{\mathrm dI(a)}{\mathrm da}+aI(a)&=0\\ 2\frac{\mathrm dI(a)}{I(a)}+a\,\mathrm da&=0\\ 2\int\frac{\mathrm dI(a)}{I(a)}+\int a\,\mathrm da&=0\\ 2\ln |I(a)|+\frac{a^2}2&=c \end{align*}\] \[\begin{align*} 2\ln |I(0)|&=c\\ 2\ln\frac{\sqrt\pi}2&=c\\ \ln\frac{\pi}4&=c\end{align*}\] \[\begin{align*} 2\ln |I(a)|+\frac{a^2}2&=\ln\frac{\pi}4\\ \ln |I(a)|&=\ln{\frac{\sqrt\pi}2}-\frac{a^2}4\\ I(a)&={\frac{\sqrt\pi}2}e^{-\frac{a^2}4} \end{align*} \]

  19. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.