Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

SteveM19 Group Title

OK, here is a differentiation problem that is baffling me -- y = {ln[ln(ln x)]} -- What is y prime? I am guessing the chain rule is the key here, but I cannot figure out the solution.

  • one year ago
  • one year ago

  • This Question is Open
  1. FelixM Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    The solution requires repeatedly applying the chain rule: \[\frac{ d }{ dx } \ln \left( \ln \left( \ln x \right) \right) = \] \[= \frac{ 1 }{ \ln \left( \ln x \right) } \times \frac{ d }{ dx } \ln \left( \ln x \right) \] \[= \frac{ 1 }{ \ln \left( \ln x \right) } \times \frac{ 1 }{ \ln x} \times \frac{ d }{ dx } \ln x \] \[= \frac{ 1 }{ \ln \left( \ln x \right) } \times \frac{ 1 }{ \ln x} \times \frac{ 1 }{ x }\] \[= \frac{ 1 }{ \ln \left( \ln x \right) \times \ln x \times x } \]

    • one year ago
  2. achillesrasquinha1408 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\frac{ 1 }{ x \ln(lnx) }\]

    • one year ago
  3. FelixM Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    First application of the chain rule: \[\frac{d}{d \ln \left( \ln x \right)} \ln \left[ \ln \left( \ln x \right) \right] \times \frac{d}{dx} \ln \left( \ln x \right)\] The first part of the expression is the derivative of ln[ln(ln x)] with respect to the inner function, ln(ln x); the second part is the derivative of the inner function, ln(ln x), with respect to x. Evaluating the first derivative yields: \[\frac{1}{ \ln \left( \ln x \right)} \times \frac{d}{dx} \ln \left( \ln x \right)\] since d/da ln(a) = 1/a. Now comes the second application of the chain rule: \[\frac{1}{ \ln \left( \ln x \right)} \times \frac{d}{d \ln x} \ln \left( \ln x \right) \times \frac{d}{d x} \ln x \] This evaluates to: \[\frac{1}{ \ln \left( \ln x \right)} \times \frac{1}{\ln x} \times \frac{1}{x}\]

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.