anonymous
  • anonymous
\[\lim_{n \rightarrow \infty}(\frac{ 1 }{ 1*3 }+\frac{ 1 }{ 3*5 }+......\frac{ 1 }{ (2n-1)(2n+1) })\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
2=3-1 so, 1/1*3 = 1/2(2/1*3) = 1/2((3-1)/3*1) = 1/2[1-1/3] do this for every term. should i do it in latex, or you got it ?
anonymous
  • anonymous
Latex...Plzz
hartnn
  • hartnn
\[\frac{1}{1 \times 3}=\frac{1}{2} \times \frac{2}{1 \times 3}=\frac{1}{2} \times[\frac{3-1}{1 \times 3}]=\frac{1}{2} \times[\frac{1}{1 }-\frac{1}{ 3}]\] do this for every term.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
2nd term = 1/3 -1/5 notice 1/3 will get cancelled, and if you go on, all the terms excepts 1st and last will get cancelled.
anonymous
  • anonymous
Would u Call This Partial Fraction Decomposition?
hartnn
  • hartnn
yes. i would.
anonymous
  • anonymous
it would be n /(2n+1) ryt? @hartnn
hartnn
  • hartnn
yes.
hartnn
  • hartnn
then limit=... ?
anonymous
  • anonymous
1/2
hartnn
  • hartnn
correct.
anonymous
  • anonymous
Thxxx
RadEn
  • RadEn
use the telescopic's principle, it can be 1/2 (1 - 1/(2n+1)) 1/2 (2n/(2n+1)) just look the cofficient of n, they are same) :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.