At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

@angelwings996 Um,Where is the question ?

Sorry, Im trying to put it into the equation

I gotta go sleep.
Someone will be here to help you soon :)

\[\frac{ \sqrt[3]{x ^{3}} }{ \sqrt[5]{x ^{2}} }\]

This is the equation I need to put in simplest form

have no fear amparo is here LOL

Haha Okaay

\[[\huge\ \frac{ \sqrt[3]{x ^{3}} }{ \sqrt[5]{x ^{2}} }] =(x^3)^{1/3}/(x^2)^{1/5}\]

so \[\sqrt[3]{x^3} = x^\frac{3}{3}\]

\[\sqrt[3]{x^2}=x^\frac{2}{3}\]

Wouldn't it be 5 instead of 3 for the second one ?

\[\sqrt[100]{x^7}=x^\frac{7}{100}\]

in your question, yes

How did you get 100 and 7 ?

or is it an example ?

that's just an example to show the use of the trick

Okay, so what would I do now ?

if they numbers have the same base, u do:
exponent on top - exponent below

\[\sqrt{x}=x^{1/2}\]
\[\sqrt[3]{x}=x^{1/3}\]
similarly
\[x^a=x^{1/a}\]

so it's 3/3-2/5 = 3/5
answer should be x^(3/5)

Oh I see!

Thank you so much for your guys' help (:

Np :)