anonymous
  • anonymous
\[\lim_{x \rightarrow 0}[\frac{ e ^{tanx}-e^x }{ tanx - x }]\]
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
\[\lim_{x \rightarrow 0}[\frac{ e ^{tanx}-e^x }{ tanx - x }]\]
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
so just use l'hopitals
anonymous
  • anonymous
try that and then i can fix if you have more problems
anonymous
  • anonymous
i tried L-Hospital..it is werid...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
d(e^tanx -e^x)/dx e^tanx (sec^2 x) -e^x
anonymous
  • anonymous
d(tanx -x)/dx sec^2 x -1
anonymous
  • anonymous
^ yup.
ParthKohli
  • ParthKohli
L'Hospital's, Chain Rule and Quotient Rule! I'd die doing this question O_O
anonymous
  • anonymous
But lim x--->0 sec^2 x-1 =0
anonymous
  • anonymous
Again use L'Hospital's Rule ???
anonymous
  • anonymous
sec^2 x-1 = tan^2 x
experimentX
  • experimentX
try using expressing in this form ... sorry don't have much time http://www.wolframalpha.com/input/?i=lim+x-%3E0+%28e^x-1%29%2Fx
experimentX
  • experimentX
this is interesting |dw:1357557494779:dw|
anonymous
  • anonymous
UsukiDoll
  • UsukiDoll
oh my lord...quotient rule will send chills
helder_edwin
  • helder_edwin
using L'Hôpital's rule \[ \large \lim_{x\to0}\frac{e^{\tan x}-e^x}{\tan x-x}= \lim_{x\to0}\frac{e^{\tan x}\sec^2x-e^x}{\sec^2x-1} \] \[ \large =\lim_{x\to0}\frac{e^{\tan x}\sec^4x+e^{\tan x}2\sec^2x\tan x-e^x}{2\sec^2x\tan x} \]
UsukiDoll
  • UsukiDoll
I see some factoring... e^tanx sec^2x
ghazi
  • ghazi
L'H rule wont work here, use expansion
UsukiDoll
  • UsukiDoll
:O
anonymous
  • anonymous
Did nt get u @ghazi
ghazi
  • ghazi
L' Hospital's rule wont be helpful here you will be getting 0/0 form use expansion of functions
UsukiDoll
  • UsukiDoll
oh wikipedia the true online source for Britannica related stuff, share with me this...KNOWLEDGE! http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
sirm3d
  • sirm3d
hmm, i got 1, but i used series.
anonymous
  • anonymous
Can u show it up ?
hartnn
  • hartnn
|dw:1357560889084:dw|
hartnn
  • hartnn
multiply and divide by x tan x.
hartnn
  • hartnn
got that ^ ?
anonymous
  • anonymous
Yeah...!...@sirm3d i also ..like..u see ur Approach ..Plzz
sirm3d
  • sirm3d
\[e^{\tan x}=1+\frac{\tan x}{1!} + \frac{\tan^2x}{2!}+\cdots\\e^{x}=1+\frac{x}{1!} + \frac{x^2}{2!}+\cdots\\e^{\tan x}-e^x=\frac{\tan x - x}{1!}+\frac{\tan^x - x^2}{2!}+\cdots\]
sirm3d
  • sirm3d
each numerator has a factor \(\displaystyle \tan x - x\) \[\Large \frac{e^{\tan x}-e^x}{\tan x - x}=\frac{(\tan x - x)(\frac{1}{1!}+\frac{\tan x + x}{2!}+\frac{\tan^x+x \tan x+x^2}{3!}+\cdots)}{\tan x - x}\]
anonymous
  • anonymous
That helps...too.....@sirm3d thxxx
sirm3d
  • sirm3d
yw.

Looking for something else?

Not the answer you are looking for? Search for more explanations.