UnkleRhaukus
  • UnkleRhaukus
\[\int\limits_0^1u^x(\ln u)^n\,\mathrm du\qquad n\in\mathbb Z>0\]
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} &\int\limits_0^1u^x(\ln u)^n\,\mathrm du\qquad&n\in\mathbb Z>0\\ &\text{let } u =e^{-w}\\ &\mathrm du=-e^{-w}\mathrm dw\\ &u=0\rightarrow w=\infty\\ &u=1\rightarrow w=0\\ &=\int\limits_\infty^0e^{-xw}(-w)^n(-e^{-w})\mathrm dw\\ &=(-1)^{n+1}\int\limits_0^\infty w^ne^{-(x+1)w}\mathrm dw\\ &=(-1)^{n+1}\left[\left.\frac{w^ne^{-(x+1)w}}{-(x+1)}\right|_0^\infty-\int\limits_0^\infty \frac{nw^{n-1}e^{-(x+1)w}}{-(x+1)}\mathrm dw\right]\\ &=(-1)^{n+1}\left[0+\frac{n}{x+1}\int\limits_0^\infty w^{n-1}e^{-(x+1)w}\mathrm dw\right]\\ &=\frac{n(-1)^{n+1}}{x+1}\int\limits_0^\infty w^{n-1}e^{-(x+1)w}\mathrm dw\\ &=\frac{n(-1)^{n+1}}{x+1}\left[\left.\frac{w^{n-1}e^{-(x+1)w}}{-(x+1)}\right|_0^\infty-\int\limits_0^\infty (n-1)w^{n-2}\frac{e^{-(x+1)w}}{-(x+1)}\mathrm dw\right]\\ &=\frac{n(-1)^{n+1}}{x+1}\left[0+\frac{n-1}{x+1}\int\limits_0^\infty w^{n-2}e^{-(x+1)w}\mathrm dw\right]\\ &=\frac{n(n-1)(-1)^{n+1}}{(x+1)^2}\int\limits_0^\infty w^{n-2}e^{-(x+1)w}\mathrm dw\\ &=\frac{n(n-1)(-1)^{n+1}}{(x+1)^2}\left[\left.\frac{w^{n-2}w^{-(x+1)w}}{-(x+1)}\right|_0^\infty-\int\limits_0^\infty\frac{(n-2)w^{n-3}w^{-(x+1)w}}{-(x+1)}\mathrm dw\right]\\ &=\frac{n(n-1)(-1)^{n+1}}{(x+1)^2}\left[0+\frac{n-2}{x+1}\int\limits_0^\infty w^{n-3}w^{-(x+1)w}\mathrm dw\right]\\ &=\frac{n(n-1)(n-2)(-1)^{n+1}}{(x+1)^3}\int\limits_0^\infty w^{n-3}w^{-(x+1)w}\mathrm dw\\ &=\qquad\vdots\\ \\ &=\frac{n!(-1)^{n+1}}{(x+1)^n} \end{align*}\]
slaaibak
  • slaaibak
woah.
UnkleRhaukus
  • UnkleRhaukus
i think i made a mistake some where, because the answer should be \[\boxed{=\dfrac{n!(-1)^{n}}{(x+1)^n}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
ah yes there are three negatives on that line , \[=\int\limits_\infty^0e^{-xw}(-w)^n(-e^{-w})\mathrm dw\\ =(-1)^n\int\limits_\infty^0e^{-xw}w^n(-e^{-w})\mathrm dw\\ =-(-1)^n\int\limits_\infty^0e^{-xw}w^ne^{-w}\mathrm dw\\ =(-1)^n\int\limits^\infty_0e^{-xw}w^ne^{-w}\mathrm dw\\ =(-1)^{n}\int\limits_0^\infty w^ne^{-(x+1)w}\mathrm dw\\ =\quad\vdots\]
sirm3d
  • sirm3d
you can also use integration by parts, arriving at a reduction formula \[\large\int u^n(\ln u)^n \mathrm du=\frac{1}{n+1}u^{n+1}(\ln u)^n - \frac{n}{n+1}\int u^n(\ln u)^{n-1} \mathrm du,n\in \mathbb Z^{+}\]
UnkleRhaukus
  • UnkleRhaukus
im not sure what i would do with such a result
sirm3d
  • sirm3d
\[\left. u^{n+1}{(\ln u)^n} \right|\;_0^1=?\]
sirm3d
  • sirm3d
\[\Large \lim_{u\rightarrow 0+}u \ln u = 0\]
sirm3d
  • sirm3d
\[\Large u^{n+1}(\ln u)^n=u(u\ln u)^n=0(0)^n=0\]
UnkleRhaukus
  • UnkleRhaukus
0^0=0?
slaaibak
  • slaaibak
it's u^x, not u^n
sirm3d
  • sirm3d
\(n\) n is a positive integer so \(0^n=0\)
sirm3d
  • sirm3d
oh, its \(x\), not \(n\).
sirm3d
  • sirm3d
\[\int_0^1u^x(\ln u)^n\mathrm du=\frac{1}{x+1}u^{x+1-n}u^n(\ln u)^n-\frac{n}{x+1}\int_0^1u^x(\ln u)^{n-1}\mathrm du\] for as long as \(x+1-n>0\), the first term in the RHS is zero. THUS, \[\int_0^1u^x(\ln u)^n\mathrm du=-\frac{n}{x+1}\int_0^1u^x(\ln u)^{n-1}\mathrm du\] eventually, n-1=0 because of the reduction formula.
sirm3d
  • sirm3d
\[\int_0^1u^x(\ln u)^n \mathrm du=(-1)^{n-1}\frac{n(n-1)\cdots(2)}{\underbrace{(x+1)(x+1)\cdots(x+1)}_{n-1\text{ factors}}}\int_0^1 u^x(\ln u)^{1-1} \mathrm du\] now, the integral on the RHS is \[\frac{1}{x+1}\] and so the desired result \[\frac{n!}{(x+1)^n}\]
sirm3d
  • sirm3d
i mean \[(-1)^{n-1}\frac{n!}{(x+1)^n}\] as desired.
sirm3d
  • sirm3d
hmm. my solution differs by a negative sign.
UnkleRhaukus
  • UnkleRhaukus
hmm
sirm3d
  • sirm3d
if i had written \[\int u^x(\ln u)^n \mathrm du=(-1)^{1}\frac{n}{x+1}\int u^x(\ln u)^{n-1}\mathrm du\\=(-1)^2\frac{n}{x+1}\frac{n-1}{x+1}\int u^x (\ln u)^{n-2}\mathrm du\\\vdots\\=(-1)^n\frac{n(n-1)\cdots(2)}{(x+1)^{n-1}}\int_0^1 u^x (\ln u)^0 \mathrm du\] note that the exponent of (-1) and (ln u) add up to n, and the recursion is applied (n-1) times so the desired result can be concluded.
experimentX
  • experimentX
|dw:1357579412038:dw| looks like this could have been shorter.
UnkleRhaukus
  • UnkleRhaukus
Yeah thats neat too

Looking for something else?

Not the answer you are looking for? Search for more explanations.