Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

\[\int\limits_0^1u^x(\ln u)^n\,\mathrm du\qquad n\in\mathbb Z>0\]

  • one year ago
  • one year ago

  • This Question is Closed
  1. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*} &\int\limits_0^1u^x(\ln u)^n\,\mathrm du\qquad&n\in\mathbb Z>0\\ &\text{let } u =e^{-w}\\ &\mathrm du=-e^{-w}\mathrm dw\\ &u=0\rightarrow w=\infty\\ &u=1\rightarrow w=0\\ &=\int\limits_\infty^0e^{-xw}(-w)^n(-e^{-w})\mathrm dw\\ &=(-1)^{n+1}\int\limits_0^\infty w^ne^{-(x+1)w}\mathrm dw\\ &=(-1)^{n+1}\left[\left.\frac{w^ne^{-(x+1)w}}{-(x+1)}\right|_0^\infty-\int\limits_0^\infty \frac{nw^{n-1}e^{-(x+1)w}}{-(x+1)}\mathrm dw\right]\\ &=(-1)^{n+1}\left[0+\frac{n}{x+1}\int\limits_0^\infty w^{n-1}e^{-(x+1)w}\mathrm dw\right]\\ &=\frac{n(-1)^{n+1}}{x+1}\int\limits_0^\infty w^{n-1}e^{-(x+1)w}\mathrm dw\\ &=\frac{n(-1)^{n+1}}{x+1}\left[\left.\frac{w^{n-1}e^{-(x+1)w}}{-(x+1)}\right|_0^\infty-\int\limits_0^\infty (n-1)w^{n-2}\frac{e^{-(x+1)w}}{-(x+1)}\mathrm dw\right]\\ &=\frac{n(-1)^{n+1}}{x+1}\left[0+\frac{n-1}{x+1}\int\limits_0^\infty w^{n-2}e^{-(x+1)w}\mathrm dw\right]\\ &=\frac{n(n-1)(-1)^{n+1}}{(x+1)^2}\int\limits_0^\infty w^{n-2}e^{-(x+1)w}\mathrm dw\\ &=\frac{n(n-1)(-1)^{n+1}}{(x+1)^2}\left[\left.\frac{w^{n-2}w^{-(x+1)w}}{-(x+1)}\right|_0^\infty-\int\limits_0^\infty\frac{(n-2)w^{n-3}w^{-(x+1)w}}{-(x+1)}\mathrm dw\right]\\ &=\frac{n(n-1)(-1)^{n+1}}{(x+1)^2}\left[0+\frac{n-2}{x+1}\int\limits_0^\infty w^{n-3}w^{-(x+1)w}\mathrm dw\right]\\ &=\frac{n(n-1)(n-2)(-1)^{n+1}}{(x+1)^3}\int\limits_0^\infty w^{n-3}w^{-(x+1)w}\mathrm dw\\ &=\qquad\vdots\\ \\ &=\frac{n!(-1)^{n+1}}{(x+1)^n} \end{align*}\]

    • one year ago
  2. slaaibak
    Best Response
    You've already chosen the best response.
    Medals 0

    woah.

    • one year ago
  3. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    i think i made a mistake some where, because the answer should be \[\boxed{=\dfrac{n!(-1)^{n}}{(x+1)^n}}\]

    • one year ago
  4. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    ah yes there are three negatives on that line , \[=\int\limits_\infty^0e^{-xw}(-w)^n(-e^{-w})\mathrm dw\\ =(-1)^n\int\limits_\infty^0e^{-xw}w^n(-e^{-w})\mathrm dw\\ =-(-1)^n\int\limits_\infty^0e^{-xw}w^ne^{-w}\mathrm dw\\ =(-1)^n\int\limits^\infty_0e^{-xw}w^ne^{-w}\mathrm dw\\ =(-1)^{n}\int\limits_0^\infty w^ne^{-(x+1)w}\mathrm dw\\ =\quad\vdots\]

    • one year ago
  5. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    you can also use integration by parts, arriving at a reduction formula \[\large\int u^n(\ln u)^n \mathrm du=\frac{1}{n+1}u^{n+1}(\ln u)^n - \frac{n}{n+1}\int u^n(\ln u)^{n-1} \mathrm du,n\in \mathbb Z^{+}\]

    • one year ago
  6. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    im not sure what i would do with such a result

    • one year ago
  7. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\left. u^{n+1}{(\ln u)^n} \right|\;_0^1=?\]

    • one year ago
  8. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\Large \lim_{u\rightarrow 0+}u \ln u = 0\]

    • one year ago
  9. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\Large u^{n+1}(\ln u)^n=u(u\ln u)^n=0(0)^n=0\]

    • one year ago
  10. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    0^0=0?

    • one year ago
  11. slaaibak
    Best Response
    You've already chosen the best response.
    Medals 0

    it's u^x, not u^n

    • one year ago
  12. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \(n\) n is a positive integer so \(0^n=0\)

    • one year ago
  13. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    oh, its \(x\), not \(n\).

    • one year ago
  14. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\int_0^1u^x(\ln u)^n\mathrm du=\frac{1}{x+1}u^{x+1-n}u^n(\ln u)^n-\frac{n}{x+1}\int_0^1u^x(\ln u)^{n-1}\mathrm du\] for as long as \(x+1-n>0\), the first term in the RHS is zero. THUS, \[\int_0^1u^x(\ln u)^n\mathrm du=-\frac{n}{x+1}\int_0^1u^x(\ln u)^{n-1}\mathrm du\] eventually, n-1=0 because of the reduction formula.

    • one year ago
  15. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\int_0^1u^x(\ln u)^n \mathrm du=(-1)^{n-1}\frac{n(n-1)\cdots(2)}{\underbrace{(x+1)(x+1)\cdots(x+1)}_{n-1\text{ factors}}}\int_0^1 u^x(\ln u)^{1-1} \mathrm du\] now, the integral on the RHS is \[\frac{1}{x+1}\] and so the desired result \[\frac{n!}{(x+1)^n}\]

    • one year ago
  16. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    i mean \[(-1)^{n-1}\frac{n!}{(x+1)^n}\] as desired.

    • one year ago
  17. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    hmm. my solution differs by a negative sign.

    • one year ago
  18. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    hmm

    • one year ago
  19. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 1

    if i had written \[\int u^x(\ln u)^n \mathrm du=(-1)^{1}\frac{n}{x+1}\int u^x(\ln u)^{n-1}\mathrm du\\=(-1)^2\frac{n}{x+1}\frac{n-1}{x+1}\int u^x (\ln u)^{n-2}\mathrm du\\\vdots\\=(-1)^n\frac{n(n-1)\cdots(2)}{(x+1)^{n-1}}\int_0^1 u^x (\ln u)^0 \mathrm du\] note that the exponent of (-1) and (ln u) add up to n, and the recursion is applied (n-1) times so the desired result can be concluded.

    • one year ago
  20. experimentX
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1357579412038:dw| looks like this could have been shorter.

    • one year ago
  21. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 0

    Yeah thats neat too

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.