anonymous
  • anonymous
cot x sec^4x = cot x + 2 tan x + tan^3x this is the problem I need to simplify. I'm not certain whether I can think of something like 2 tan as tan^2. I'm also having problems finding identities that will help me. Thank you so much!
Trigonometry
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
What happens when you sub \(\sec^2(x) = \tan^2(x)+1\)?
anonymous
  • anonymous
Since \(\sec^4(x) = [\sec^2(x)]^2\)
anonymous
  • anonymous
So i can use that formula, but instead of tan^2(x) + 1. I do [tan^2(x) + 1]^2?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Exactly
anonymous
  • anonymous
Then foil it out and see if you've gotten closer.
anonymous
  • anonymous
cot x [tan^2(x) + 1]^2 = cot x + 2 tan x + tan^3x which turns into : cot x tan^4(x^2) + 1 = cot x + 2 tan x + tan^3x correct?
anonymous
  • anonymous
Not quite... \[ [\tan^2(x)+1]^2 = [\tan^4(x) + 2\tan^2(x) + 1] \]
anonymous
  • anonymous
Since \(\cot(x) = 1/\tan(x)\) it will basically lower the power of the \(\tan(x)\) terms.
anonymous
  • anonymous
Sorry, I'm not sure where you got the 2 tan ^2 from

Looking for something else?

Not the answer you are looking for? Search for more explanations.