Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1357625465697:dw|
ok so what do you think? :)
the goal is to help, not to tell you the answer. sorry, we can't help on your test ;). So look up l'hopital and indeterminate form next.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

bamp
yup. look up l'hopital and "indeterminate" form.
tell us what you find
Dude Hero gave it away man. 1/x vanishes and then you have \[(1)^{-x}\]
@Azteck how did he give it away? . ok first get @Argos to find out what indeterminate form is -____-
i know inderminite form is 0/0 or inf/inf
and can to use lhospitals rule on those but nega exponent
Then you get this: \[\frac{ 1 }{ (1){^x} }\] \[\frac{ 1 }{ (1)^{\infty} }\] \[=\frac{ 1 }{ 1 }\]
so answer is 1?
because the back of the book sais its e
nope I even doubel checked on wolfram http://www.wolframalpha.com/input/?i=lim+as+x-%3E+inf+of+%281-%281%2Fx%29%29^-x
Limit x approaches to infinity ( 1+ (1/x) )^x = e In your case, just replace x by -x in this formula. So, it's e.
yeah 1 to the infinity is indeterminate so substitution will not work
shouldnt answer be 2 ? from binomial approximation ?
Shouldn't it be e? A more accurate answer?
i can see easily why e fits here.. but i dont understand why doesnt the ans come from binomial approximation
Sorry, I don't know binomial...
ahh,maybe i see why.. power should be a real no. for that, here, power is not a real no.
so, e is correct..
|dw:1357649297414:dw|
Even though we use L'Hopital's Rule, we get the same answer.. Let \(y= (1-\frac{1}{x})^{-x}\) \[\ln y= -x \ln (1-\frac{1}{x})\]\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}-x \ln (1-\frac{1}{x})\]\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}\frac{ \ln (1-\frac{1}{x})}{-\frac{1}{x}}\]Use L'Hopital's Rule:\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}\frac{\frac{1}{{(1-\frac{1}{x})}}(\frac{1}{x^2})}{{\frac{1}{x^2}}}\]\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}\frac{1}{{(1-\frac{1}{x})}}\]\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}\frac{1}{{(\frac{x-1}{x})}}\]\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}\frac{x}{x-1}\]Use L'Hopital's Rule again.\[\lim_{x \rightarrow \infty}\ln y= \lim_{x \rightarrow \infty}\frac{1}{1}\]\[\lim_{x \rightarrow \infty}\ln y= 1\]\[\lim_{x \rightarrow \infty}e^{\ln y}= e^1\]\[\lim_{x \rightarrow \infty}y= e^1\]\[\lim_{x \rightarrow \infty}(1-\frac{1}{x})^{-x}= e\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question