find all solutions of the equation in the terminal [0, 2 pi). sec^2 x + tan x = 1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find all solutions of the equation in the terminal [0, 2 pi). sec^2 x + tan x = 1

Trigonometry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

please help!
Use the fact that \[sec^{2} x = \tan^{2}x + 1\] and therefore the equation becomes, after substitution and some algebraic manipulation, \[\tan^{2}x +\tan x = 0\] Then factor to get \[\tan x(\tan x +1)=0\] and therefore either \[tan x = 0\] or \[ \tan x + 1=0\] In the first case, then on this interval, either \[x = 0\] or \[x = \pi\] In the second case, then we get \[ \tan x = -1\] and therefore \[x=\frac{3\pi}{4}\] or \[x=\frac{7\pi}{4}\].
Well: \[\sec^2(x)=1+\tan^2(x) \implies \tan^2(x)+\tan(x)+1=1\] \[ \implies \tan(x)(\tan(x)+1)=0 \implies \tan(x)=0, \tan(x)=-1; x=n \pi, x=\frac{(4n+3) \pi}{4}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The last part should be: \[\frac{(4n+3) \pi}{4}\]
thank you

Not the answer you are looking for?

Search for more explanations.

Ask your own question