UnkleRhaukus
  • UnkleRhaukus
Show that the function satisfies the DE
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
1 Attachment
UnkleRhaukus
  • UnkleRhaukus
\[\begin{equation*} xJ''+J'+xJ=0 \end{equation*}\] \[\begin{align*} J(x)&=\frac2\pi\int\limits_0^{\pi/2}\cos\left(x\sin (u)\right)\,\mathrm du\\ J'(x)&=\frac2\pi\int\limits_0^{\pi/2}\frac{\partial}{\partial x}\cos\left(x\sin (u)\right)\,\mathrm du\\ &=\frac{-2}\pi\int\limits_0^{\pi/2}\sin(u)\sin\left(x\sin (u)\right)+\,\mathrm du\\ \\ J''(x)&=\frac{-2}\pi\int\limits_0^{\pi/2}\frac{\partial}{\partial x}\sin(u)\sin\left(x\sin (u)\right)\,\mathrm du\\ &=\frac{-2}\pi\int\limits_0^{\pi/2}\sin^2(u)\cos\left(x\sin (u)\right)\,\mathrm du\\ \\ \end{align*} \]
UnkleRhaukus
  • UnkleRhaukus
\[ \begin{align*} &xJ''+J'+xJ\\ &=\frac{-2x}\pi\int\limits_0^{\pi/2}\sin^2(u)\cos\left(x\sin (u)\right)\,\mathrm du+\frac{-2}\pi\int\limits_0^{\pi/2}\sin(u)\sin\left(x\sin (u)\right)\,\mathrm du+\frac{2x}\pi\int\limits_0^{\pi/2}\cos\left(x\sin (u)\right)\,\mathrm du\\ &=\frac{2}\pi\int\limits_0^{\pi/2}-x\sin^2(u)\cos\left(x\sin (u)\right)-\sin(u)\sin\left(x\sin (u)\right)+x\cos\left(x\sin (u)\right)\,\mathrm du\\ &=\frac{2}\pi\int\limits_0^{\pi/2}x(1-\sin^2(u))\cos(x\sin(u))-\sin(u)\sin\left(x\sin (u)\right)\,\mathrm du\\ &=\frac{2}\pi\int\limits_0^{\pi/2}x\cos^2(u)\cos(x\sin(u))-\sin(u)\sin\left(x\sin (u)\right)\,\mathrm du\\ \end{align*} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
i think i need to find [?]\[\begin{equation*}\frac{\partial }{\partial u}\Big[\quad?\quad\Big]=x\cos^2(u)\cos(x\sin(u))-\sin(u)\sin\left(x\sin (u)\right)\end{equation*}\]
anonymous
  • anonymous
I wish I was in this class :/
UnkleRhaukus
  • UnkleRhaukus
am i thinking about this problem the right way?
UnkleRhaukus
  • UnkleRhaukus
hmm wolfram tells me \[\begin{equation*}\frac{\partial }{\partial u}\Big[\cos(u)\sin\left(x\sin(u)\right)\Big]=x\cos^2(u)\cos(x\sin(u))-\sin(u)\sin\left(x\sin (u)\right)\end{equation*}\]
UnkleRhaukus
  • UnkleRhaukus
I am meant to be able to work that bit out in my head?
UnkleRhaukus
  • UnkleRhaukus
its just the product rule in reverse but is kind hard to make that step
AccessDenied
  • AccessDenied
The work appears correct to me here. I can't say I'd be able to get that antiderivative easily though, in my head... lol
UnkleRhaukus
  • UnkleRhaukus
the wolfram step-by-step solution starts by assuming we can tell the factors in the product rule, after we have worked out these , the problem is simple, but i have trouble seeing the factors
1 Attachment
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*}&=\frac{2}\pi\int\limits_0^{\pi/2}\frac{\partial }{\partial u}\Big[\cos(u)\sin\left(x\sin(u)\right)\Big]\,\mathrm du\\ &=\frac{2}\pi\cos(u)\sin\left(x\sin(u)\right)\Big|_0^{\pi/2}\,\mathrm du\\ &=\frac{2}\pi\left[\cos(\tfrac\pi2)\sin\left(x\sin(\tfrac\pi2)\right)-\cos(0)\sin\left(x\sin(0)\right)\right]\,\mathrm du\\ \\ &=0\\\end{align*}\]
AccessDenied
  • AccessDenied
\[ \begin{align} \frac{\partial}{\partial u} \left( \cos u \; \sin ( x \sin u ) \right) &= \frac{\partial}{\partial u} \left( \cos u \right) \sin (x \sin u) + \cos u \frac{\partial}{\partial u} \left( \sin ( x \sin u ) \right) \\ &= \color{#aa0000}{ \neg \sin u } \color{#00aa00}{ \sin (x \sin u) } + \color{#00aa00}{ \cos u } \; \color{#aa0000}{ x \cos u \cos (x \sin u) } \\ \text{Let } k = x \sin u; \quad k' = x \cos u. \\ &= \color{#aa0000}{ \neg \sin u } \color{#00aa00}{ \sin k } + \color{#00aa00}{ \cos u } \; \color{#aa0000}{ k' \cos k } \end{align} \] I think it looks a little clearer when you replace the weird composition of functins and find the derivative of the inner function / replace that...
UnkleRhaukus
  • UnkleRhaukus
that is a good method letting k= x sin u , because it is common to both terms thanks. P.S. \(\neg\) is not the same as\(-\)
AccessDenied
  • AccessDenied
ooh, I see what that is now. I kept thinking \neg was a negative sign and the bent end was just a weird latex thing. i remember seeing it in something else now.. lol :P You're welcome, and thanks!
UnkleRhaukus
  • UnkleRhaukus
negation is used in logic and sets, for example if the universal set is U={1,2,3,4,5,6,7,8} and a subset is S={1,2} the negation of S ¬S={3,4,5,6,7,8}
anonymous
  • anonymous
In set-theory it's called a *complement* rather than a negation, which is typically used in logic.

Looking for something else?

Not the answer you are looking for? Search for more explanations.