anonymous
  • anonymous
If \[x_{1}, x_{2},...,x_{n}\] are given numbers, show that \[(x_{1}-x)^{2} +(x_{2}-x)^{2}+...+(x_{n}-x)^{2}\] is least when x is the arithmetic mean of \[x_{1}, x_{2},..., x_{n}.
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[x_{1}, x_{2},..., x_{n}\]
anonymous
  • anonymous
Let S be the summation \[S = (x _{1} - x)^{2} + (x _{2} - x)^{2} + . . . + (x _{n} - x)^{2}\] Find the derivative of S
anonymous
  • anonymous
Remember that the only variable here is x, all the x's with subscripts are constants.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yep. I'm just getting the sum of that AP
anonymous
  • anonymous
Yeah this one was easier than the question before. Thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.