anonymous
  • anonymous
solve sin 4x - cos 2x = 0
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
sin4x-cos2x=0 2sin2xcos2x-cos2x=0 2sinucosu-cosu=0 (2sinu-1)cosu=0 2sinu-1=0 or cosu=0 2sin=1 u=(pi/2)+n pi sinu=1/2 u=(pi/6)+2npi or u=(5pi/6)+2npi replace u with 2x ,then solve to x
anonymous
  • anonymous
x=(pi/12)+n pi x=(5pi/12)+n pi x=(pi/4)+n(pi/2)
anonymous
  • anonymous
sin4x-cos2x=0 sin(2x+2x)-cos2x=0 (sin2xcos2x+cos2xsin2x)-cos2x=0 2sin2xcos2x-cos2x=0 cos2x(2sin2x-1)=0 cos2x=0 or 2sin2x-1=0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[2x=\cos^{-1} 0\]
anonymous
  • anonymous
\[2\sin2x=1\]
anonymous
  • anonymous
\[2x=\sin^{-1} 0.5\]
anonymous
  • anonymous
15 degree
ZeHanz
  • ZeHanz
This is my try of the problem: I'm going to use a well-known formula for double angles:\[\sin2x=2 \sin x \cos x\]You can use this formula to reduce the sine of 2x to sines and cosines of half of 2x (=x). This means e.g. :\[\sin50x=2 \sin 25x \cos 25 x\]so again: only half of the original 50x is left. Now apply it to the equation:\[\sin 4x - \cos 2x= 0\]then becomes \[2\sin2x \cos 2x -\cos 2x =0\]Factor out the cos 2x:\[\cos 2x \cdot (2\sin2x-1)=0\]This makes everything much easier, because this is an equation of the form: \[a \cdot b = 0\]YOu can split it up into:\[a=0 \vee b=0\]So here that is:\[\cos 2x=0 \vee 2\sin 2x -1 =0\]\[\cos 2x = 0 \vee \sin 2x = \frac{ 1 }{ 2 }\]Now it is all standard work to be done from here:\[\cos 2x=0 \Leftrightarrow 2x=\frac{ 1 }{ 2 } \pi + k \pi \Leftrightarrow x = \frac{ 1 }{ 4 }\pi + \frac{ 1 }{ 2 }k \pi\]\[\sin 2x = \frac{ 1 }{ 2 } \Leftrightarrow 2x=\frac{ 1 }{ 6 }\pi + 2k \pi \vee 2x= \frac{ 5 }{ 6 }\pi + 2k \pi\]\[x=\frac{ 1 }{ 12 }\pi + k \pi \vee x = \frac{ 5 }{ 12 } \pi + k \pi\] Everytime there is a "k" in the anser, it means an integer. If you want to understand better what kind of numbers all these x-values are, you can also list them as follows:\[\frac{ 1 }{ 12 }\pi,\frac{ 1 }{ 4 }\pi,\frac{ 5 }{ 12 }\pi,\frac{ 3 }{ 4 }\pi,1\frac{ 1 }{ 12 }\pi,1\frac{ 1 }{ 4 }\pi,1\frac{ 5 }{ 12 }\pi,...\]
anonymous
  • anonymous
thank you everyone!
ZeHanz
  • ZeHanz
yw!

Looking for something else?

Not the answer you are looking for? Search for more explanations.