Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Solve the initial problem \[y_1''=2y_1+y_2+y_1'+y_2'\]\[y_2''=-5y_1+2y_2+5y_1'-y_2'\]\(y_1(0)=y_2(0)=y_1'(0)=4\), \(y_2'(0)=-4\)

Linear Algebra
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
  • hba
Integrate.
Note that I put this under linear algebra.
I think it has something to do with eigenvalues and eigenvectors

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

and diagonalization too
let y'1 = u, and y'2 = v, you get 4x4 system.
Hmm.. How??
|dw:1357743467559:dw|
|dw:1357743488688:dw|
let that matrix be A, you get X' = AX <-- this is logistic equation ... I must admit ... to me, this is not a nice question.
the solution is \[ X = Se^{\Lambda t}S^{-1}X(0)\]
|dw:1357745773804:dw|
how about laplace transform?
|dw:1357746034677:dw||dw:1357746105903:dw|
|dw:1357746162435:dw|
|dw:1357746200518:dw||dw:1357746235140:dw|
so the final solution is |dw:1357746290760:dw|
@sirm3d Using the laplace transform is not as pretty as @experimentX 's cleaner linear algebra solution. You're not guaranteed invertible functions in the frequency domain.

Not the answer you are looking for?

Search for more explanations.

Ask your own question