anonymous
  • anonymous
Help with 1a 6b
OCW Scholar - Single Variable Calculus
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I don't know if this is the fastest way, but here's what I would do: \[A \sin(x+c) = A(sinx cosc + sinccosx)\] Since there already is a sinx - cosx, we know that c will be in 4th quadrant because sinc must be negative and cosc must be positive, and that cosc = sinc (ignoring the signs) This gives us \[3\pi/4\] or \[-\pi/4\] And since we have a common factor of \[\sqrt{2}/2\] we need to make A to cancel that so A will = \[\sqrt{2}\] And so we get: \[\sqrt{2} \times (\sin(x+3\pi/4))\] or \[\sqrt{2} \times (\sin(x-\pi/4))\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.