anonymous
  • anonymous
Find an exact value: cos(pi/12)
Trigonometry
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

mathmate
  • mathmate
let y=cos(pi/12), then apply the double angle formula: cos^2(x)-sin^2(x)=cos(2x) or, substituting sin^2(x)+cos^2(x)=1, 2cos^2(x)-1=cos(2x) cos^2(x)=(1+cos(2x))/2 let x=pi/12 then cos^2(pi/12)=(1+cos(pi/6))/2 Since cos(pi/6) is known to be sqrt(3)/2, cos(pi/12)=sqrt((1+sqrt(3)/2)/2)
anonymous
  • anonymous
im sorry but thats not one of my options
anonymous
  • anonymous
i somehow have to use the sum and difference formulas

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmate
  • mathmate
Are they in numerical values?
anonymous
  • anonymous
yes they all have sqrt6 and sqrt2 over 4 but with different signs +/-
mathmate
  • mathmate
cos^2(x)-sin^2(x)=cos(2x) is from the double angle formula.
anonymous
  • anonymous
how would you split pi/12? i think thats what i need to do?
mathmate
  • mathmate
You will need to evaluate each option to see if it evaluates to: sqrt((1+sqrt(3)/2)/2) which can be written as sqrt((2+sqrt(3)/4) or sqrt(2+sqrt(3))/2 Why don't you post the options if you're not sure?
anonymous
  • anonymous
ok i think i got it thanks!!
mathmate
  • mathmate
yw! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.