Suppose {\(v_1, ..., v_m\)} spans a vector space V and suppose \(v_i\) is linear combination of the preceding vectors. Show that {\(v_1, ..., v_{i-1}, v_{i+1}, ..., v_m\)}spans V. How to start?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Suppose {\(v_1, ..., v_m\)} spans a vector space V and suppose \(v_i\) is linear combination of the preceding vectors. Show that {\(v_1, ..., v_{i-1}, v_{i+1}, ..., v_m\)}spans V. How to start?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

are {v1 ,..,vn} independent ?
Hmm... suppose i) they are independent ii) they are dependent It is not specified in the question. So, I would like to know how it works for these two cases.
In English, (sort of), if a set of vectors (let's call it S) which contains v[i] spans V, then if you take away v[i], the resulting set would still span V, yes? :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Oh, and apparently, v[i] is a linear combination of the other vectors. My bad :D
Hey, @RolyPoly you know what linearly independent/dependent means right?
But that wasn't really important, you're right... Anyway, to show that a set spans a vector space, take an arbitrary element of said vector space (V) and show that it can be written as a linear combination of the set which you want to show is a spanning set... (mouthful, that was)
If \(v_i\) is the linear combination, then \(v_i=a_1v_1+\ldots+a_{i-1}v_{i-1}+a_{i+1}v_{i+1}+\ldots+a_mv_m\). Where not all \(a_k\) are equal to zero. That means that any vector in \(V\) can be represented as \(a_1v_1+\ldots+a_{i-1}v_{i-1}+a_iv_i+a_{i+1}v_{i+1}+\ldots+a_mv_m\). But \(v_i\) is a linear combination of previous vectors. So any vector in \(V\) can be represented as \(a_1v_1+\ldots+a_{i-1}v_{i-1}+a_{i+1}v_{i+1}+\ldots+a_mv_m\). The End.
Let's take an arbitrary element of V, (let's call it w) Since we know the set S spans V, then all elements of V, w included can be written as \[w=a_{1}v_{1}+a_{2}v_{2}+ \ ... \ +a_{i}v_{i} + \ ... \ + a_{m}v_{m}\]
Just a double check with my concept: linear dependent: c1v1, c2v2, ... , cnvn =0 for c1, c2, ..., cn not zero?!
They can be zeros, but not all at the same time.
not all zero
So, all zero = linear independence, right?
*independent
If all of the scalar coefficients have to be zero to make the linear combination equal to the zero vector, then yes, the vectors are linearly independent.
Okay, thanks. Also, what is the purpose of stating that ''Where not all ak are equal to zero.''?? I don't understand this part..
Because, if every a[k] has to be zero for that particular linear combination to be equal to the zero vector, then that means that that set is linearly independent. You may or may not have taken this up yet, but if a set of vectors is linearly independent, then under no circumstances is any of them a linear combination of the others. (Proof on demand)
Sorry, I spoke too soon. That one over there was pointless ^ My bad anyway, actually, it doesn't matter if all the a[k]'s are zero, it wouldn't make a difference, although that's too trivial a case to tackle
So, if not all ak are equal to 0, then, it is linear dependent. So, it can be a linear combination of others. If all ak are equal to 0, then it is linear independent. So, it can't be a linear combination of the others. Is that right? (I would really love to learn more before I formally take this course. So, you are welcomed to introduce more relevant concepts :) Thanks!)

Not the answer you are looking for?

Search for more explanations.

Ask your own question