At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
I'm not so sure my teacher wants me to apply Vieta's Theorem yet, because she hates it when we move on ahead of her teachings...btw she can't teach =_=
If you want to factor \(x^2+kx-19\), I hope you will think it will be \((x-a)(x-b)\). So, when expanding: \(x^2-(a+b)x+ab\). Now just look at the coefficients. \(k=-(a+b), -19=ab\). You want only integers. From the second equality it will be only \(a=1,b=-19\) or \(a=19,b=-1\), because 19 is a prime number. Now try to find \(k\) in both cases.
You say that it is no need in writing \(k=a(8-a), a=1,2,\ldots ,7\). Because it will have the same value for \(a=1\) and \(a=7\). I just showed the way I had solved this task. Sorry.