solve sin^2 x +2 sinx cosx = 0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

solve sin^2 x +2 sinx cosx = 0

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

sinx(sinx+2cosx) = 0 What can you do now? think.
if a*b = 0, Either a = 0 or b = 0 Here, a = sinx and b = sinx + 2cosx
i don't think this is that easy

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

that is \(\sin(x)=0\) is easy enough to solve, you get \(x=n\pi, n\in \mathbb{Z}\) but i can't see a good way to solve \[\sin(x)=-2\cos(x)\]
\[sin^2x+2\ sin\ x\ cos\ x=0\] \[sin\ x(sin\ x+2\ cos\ x)=0\] \[(sin\ x+2\ cos\ x)=0\]
that is not to say you cannot do it, but it is going to take some work
the first thing you have to do to solve \[\sin(x)+2\cos(x)=0\] is to write it as a single function of sine
in general you can write \[a\sin(x)+b\cos(x)\] as \[\sqrt{a^2+b^2}\sin(x+\theta)\]
:'( i need help on mine
I kinda wonder if you could do \(\sin^2(x) + \sin(2x)=0\).
in this case you get \[\sin(x)+2\cos(x)=\sqrt{5}\sin(x+\theta)\] where \(\tan(\theta)=2\)
tanx = -2 x = atan(-2) + n*(pi)
therefore \(x+\theta=n\pi\) gives \(\theta=n\pi-\tan^{-1}(2)\)
you can check that it is right by looking here http://www.wolframalpha.com/input/?i=sin%28x%29%2B2cos%28x%29
@ParthKohli i don't think that identity is going to help in this case you will have two arguments, one of \(x\) and the other of \(2x\) if you have a solution from that approach i would love to see it
oh I had forgotten this site Thanx @satellite73 for remembering :)
Gaahh @satellite73 you were right.

Not the answer you are looking for?

Search for more explanations.

Ask your own question