anonymous
  • anonymous
The derivative of an even function is an odd function. the derivative of an odd function is an even function. Prove these results from the limit definition of the derivative: lim(as x approaches zero) [f(x) - f(a)]/(x -a)
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Your limit definition is incorrect btw. Here it is: \[\lim_{h \rightarrow 0}\frac{ f(x+h)-f(x) }{ h }\]
anonymous
  • anonymous
I think in the video when the professor teaching the "Binomial theorem" since 44:00, he explained your question.
1 Attachment
anonymous
  • anonymous
I attached a picture in the above post with the examples which may help you to understand.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
all question mark is actually delta, I think the system didn't recognize my answer, the 47:06 and below number means the time in the video. Hope this can help you.
anonymous
  • anonymous
The seconde half of the problem is trivial following from the first. So I'll elaborate on the first here. Proof Suppose f(x) is an even function, i.e. \[\forall x, f(x)=f(-x)\] The derivative of f(x) at x \[g(x)=\lim_{\Delta x \rightarrow 0}\frac{ f(x+\Delta x) - f(x)}{ \Delta x } \] The derivative of f(x) at -x \[g(-x)=\lim_{\Delta x \rightarrow 0}\frac{ f((-x)+\Delta x) - f(-x)}{ \Delta x }\] since \[\forall x, f(x)=f(-x)\],we have \[ f((-x)+\Delta x)= f(x- \Delta x)\],thus \[g(-x)=\lim_{\Delta x \rightarrow 0}\frac{ f(x-\Delta x) - f(x)}{ \Delta x }=-\lim_{ -\Delta x \rightarrow 0}\frac{ f(x+(-\Delta x) ) - f(x)}{- \Delta x } \] Thus \[g(-x)= -g(x) \],i.e.g(x) is an odd function.

Looking for something else?

Not the answer you are looking for? Search for more explanations.