Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Find the derivative: y= sin(cos(2x))

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

Are you familiar with the Chain Rule for differentiation?
Help me along though please

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so sin(2x) * d/dx (sin(2x)?
What is the general set up for the Chain Rule? y = f(g(x)) What is the derivative of this general function?
derivative is cos
Hmm... I think you have something mixed up in your approach. The Chain Rule states: y = f(g(x)); the derivative y' = f'(g(x)) * g'(x) In our case (y = sin(cos(2x)))), f(x) = sin x and g(x) = cos (2x). y' = derivative of f with respect to g, times the derivative of g with respect to x.
A good way to illustrate is to let the inner function, \(\cos 2x = u\), and find dy/du and du/dx. Their product is dy/du * du/dx = dy/dx, which is what we want to find. First, let's find dy/du. \( \displaystyle y = \sin u \) \( \displaystyle \frac{\text{d}y}{\text{d}u} = \frac{\text{d}}{\text{d}u} \sin u \) \( \displaystyle \frac{\text{d}y}{\text{d}u} = \cos u \) Now, du/dx. \( \displaystyle u = \cos 2x \) \( \displaystyle \frac{\text{d}u}{\text{d}x} = \frac{\text{d}}{\text{d}x} \cos 2x \) \( \displaystyle \frac{\text{d}u}{\text{d}x} = - 2 \sin 2x \) dy/dx = dy/du * du/dx. It's kind of like cancelling out, in essence. \( \displaystyle \frac{\text{d}y}{\text{d}u} \cdot \frac{\text{d}u}{\text{d}x} = \left(\cos u\right) \left( -2 \sin 2x \right) \) \( \displaystyle \frac{\text{d}y}{\text{d}x} = -2 \sin 2x \cos ( \cos 2x ) \)

Not the answer you are looking for?

Search for more explanations.

Ask your own question