anonymous
  • anonymous
How many 6 digit positive integers are there, consisting of exactly one 3, one 5, two 4s, and the remaining two digits either 7 or 8?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmate
  • mathmate
If all the 6 digits are all non-zero and distinct, there are 6! possible integers. If there are two identical digits, we need to divide by 2! Don't know if the 7 and 8's mean A. EITHER two 7's OR two 8's,, or B. EACH digit is 7 or 8. Case A: 1. if both are 7's => 6!/(2!2!) 2. if both are 8's => 6!/(2!2!) Total 2*6!/(2!2!) Case B: 1. same digits (7/7 or 8/8) => 2*6!/(2!2!) 2. different digits (7/8 or 8/7) => 6!/2! Total = 2*6!/(2!2!) + 6!/2! =6!
anonymous
  • anonymous
Thanks for your answer! Sorry, it meant each. Paraphrased a little. I'm confused, why do we divide by 2! if there are 2 identical digits? Why do we divide (why isn't it 6!/(2!2!)

Looking for something else?

Not the answer you are looking for? Search for more explanations.