Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 3 years ago

Macros \[\newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\de[2]{\frac{\mathrm d #1}{\mathrm d#2}} % first order derivative \newcommand\pa[2]{\frac{\partial #1}{\partial #2}} % partial derivative \newcommand\den[3]{\frac{\mathrm d^#3 #1}{\mathrm d#2^#3}} % n-th derivative \newcommand\pan[3]{\frac{\partial^#3 #1}{\partial#2^#3}} % n-th partial derivative \dd x \de yx \pa yx \den yxn \pan yxn\]

  • This Question is Closed
  1. UnkleRhaukus
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    ``` \newcommand\Beta[2]{\operatorname B \left(#1,#2\right)} % Beta function of (m,n) \Beta mn ``` \[\newcommand\Beta[2]{\operatorname B \left(#1,#2\right)} % Beta function of (m,n) \Beta mn\]

  2. UnkleRhaukus
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    ``` \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd#4}} % integral _{a}^{b}{f(x)}\dd x \newcommand\erf[1]{\operatorname{erf}\left(#1\right)} % Error function (#1) \newcommand\erfi[1]{\frac2{\sqrt\pi}\intl{0}{#1}{e^{-u^2}}{u}} % Error function integral (#1) \intl abfx\\ \erf x=\erfi x\\ \erf y=\erfi y\\ \erf z=\erfi z ``` \[\newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd#4}} % integral _{a}^{b}{f(x)}\dd x \newcommand\erf[1]{\operatorname{erf}\left(#1\right)} % Error function (#1) \newcommand\erfi[1]{\frac2{\sqrt\pi}\intl{0}{#1}{e^{-u^2}}{u}} % Error function integral (#1) \intl abfx\\ \erf x=\erfi x\\ \erf y=\erfi y\\ \erf z=\erfi z\]

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy