anonymous
  • anonymous
Back to the cards! In poker, a flush is when all five cards are the same suit. Find the probability of being dealt a flush (when being dealt five cards). Start by just considering clubs.
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
a) What is the probability that the first card dealt is a club? b) What is the probability that the second card dealt is a club given that the first one was a club? c) What is the probability that the third card dealt is a club given that the first two were clubs? d) What is the probability that the fourth card dealt is a club given that the first three were clubs? e) What is the probability that the fifth card dealt is a club given that the first four were clubs? f) The probability of being dealt all five clubs is the product of the above probabilities. Why is this true and what is this probability? g) You have now found the probability of being dealt a flush in clubs. This is the same as the probability of being dealt a flush in diamonds, hearts, or spades. Then, what is the proability of being dealt a flush?
hba
  • hba
How many cards in a deck ?
anonymous
  • anonymous
Umm... im not sure

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@mathmate
anonymous
  • anonymous
@Hero @radar
anonymous
  • anonymous
@marsss
anonymous
  • anonymous
There are 52 cards in a standard deck. Divide by 4 to get the number of cards of each suit.
radar
  • radar
That would mean there are 13 club cards out of 52 cards. Wouldn't that mean the probability of drawing a club is 1 out of 4?
mathmate
  • mathmate
Yes, drawing the first club out of the full deck of 52 cards has a probability of 1 out of 4, or 0.25. What about the probabiliity of the second card: - how many clubs are left (assuming first one is a club) ? - how many cards are left in the deck?
radar
  • radar
Now on the 2nd draw there would be 13 club cards out of 51 3rd draw 12 out of 50 4th draw 11 out of 49 5th draw 10 out of 48
mathmate
  • mathmate
...huh?
radar
  • radar
Wouldn't that be the chances for each draw assuming he draws into a 5 card flush. Now take the product of all those chances to get the probability. 1/4 * 13/51 * 6/25 * 11/49 * 5/24
radar
  • radar
I would guesstimate a little less than 1400 to 1
radar
  • radar
What does google say?
anonymous
  • anonymous
hey I'm here now
anonymous
  • anonymous
so a i got 1/4. what is b?
radar
  • radar
Chance according to Google is 0.003940. or about 254 to 1 so it looks like I probably erred.
anonymous
  • anonymous
so b is 254/1?
anonymous
  • anonymous
or .004?
radar
  • radar
I am afraid I have been away from those kind of problems too long. Hopfully, @mathmate will provide further assistance.
anonymous
  • anonymous
Do u know anyone online right now that can give me assistance now?
anonymous
  • anonymous
@Agent_Sniffles
anonymous
  • anonymous
@zepdrix
radar
  • radar
The Google solution involved a flush in any suit not just clubs.
anonymous
  • anonymous
huh?
radar
  • radar
The probability of a flush can occur in hearts, diamonds, spades or clubs, just as long as all cards are the same suit!
anonymous
  • anonymous
So what would my answers be?
radar
  • radar
You requested the probability of a flush in clubs only.
anonymous
  • anonymous
Yea. thats what the question said
anonymous
  • anonymous
how would I start answering B?
radar
  • radar
I answered that, if the first one was a club, you now have a deck of 51 cards of which 12 are clubs; 12/51 or 0.235294
anonymous
  • anonymous
Ok so b would then be 12/51?
radar
  • radar
Here is mathmate. hopefully shed some light on this.
anonymous
  • anonymous
I have (a) 1/4 (b) 12/51 now c?
radar
  • radar
Ask yourself how many cards are now in the deck, how many are clubs and figure out the probability using the method you have been taught.
mathmate
  • mathmate
Sorry for being away. @radar sorry, I was just questioning in case there was a typo. For (b) After the first card, there are 13-1=12 clubs left out of 51. So the probability is 12/51. Or, using conditional probabilities: P(1)=13/52 P(1&2)=13/52*12/51 P(2|1)=P(2&1)/P(1)=(13/52*12/51) / (13/52) = 12/51, same as before.
anonymous
  • anonymous
Okay I got that for (b) too!:) Im not sure how to find c now
radar
  • radar
Sorry but I have to now run, you are in good hands.
anonymous
  • anonymous
Would (c) be 11/51 then?
mathmate
  • mathmate
@schmidtdancer The questions are made in such a way to guide you to the final answer. I suggest that after a and b have been explained and answered, it would be advantageous for you to continue the logic and post your suggested responses for verification. What do you think?
anonymous
  • anonymous
? I just need clarification on how to find C. can u guide me through the steps....and ill figure it out by myself then u can check?
anonymous
  • anonymous
@mathmate
anonymous
  • anonymous
@precal
mathmate
  • mathmate
Sure!
anonymous
  • anonymous
Thanks! how do i begin c?
anonymous
  • anonymous
c) What is the probability that the third card dealt is a club given that the first two were clubs?
mathmate
  • mathmate
For the third club in a row, how many clubs are left? and how many cards are left in the deck?
anonymous
  • anonymous
since there are 14 clubs in a set, then we would have 11 left right?
anonymous
  • anonymous
because b is 12/51? and were losing another so would c be 11/51?
mathmate
  • mathmate
I'll make it clear: After the first two clubs are drawn and before we draw the third card, how many clubs remain in the deck, and how many cards total remain?
anonymous
  • anonymous
there are 14 clubs total in a deck... and 52 cards total in a deck... so, after two are drawn, then we have 12 clubs and 50 cards?
anonymous
  • anonymous
is that for b or c?
anonymous
  • anonymous
@mathmate ????
anonymous
  • anonymous
@countonme123
mathmate
  • mathmate
Each deck has 52 cards, divided by 4 suits gives 13 cards per suit to start with (not 14). (a) before drawing any card, we have 13 clubs and 52 cards. (b) given the first card drawn was a club, before drawing the second card, we have 12 clubs and 51 cards. (c) given the first 2 cards drawn were clubs, before drawing the third card, we have how many clubs and how many cards in the deck?
anonymous
  • anonymous
10/49?
anonymous
  • anonymous
@mathmate
mathmate
  • mathmate
We have only drawn 2 clubs out of 13, how many left?
anonymous
  • anonymous
11
mathmate
  • mathmate
Sorry, the OS seems to be very selective in response. I cannot get to your question unless I go by your profile. When I go by "mathematics", it never responds for the past two days.
anonymous
  • anonymous
Its ok. but is 11 right?
mathmate
  • mathmate
(c) Also, drawn two cards (clubs) out of 52, how many left?
anonymous
  • anonymous
50
anonymous
  • anonymous
so 11/52 would be c?
anonymous
  • anonymous
I mean 11/50!!!!
anonymous
  • anonymous
right @mathmate
mathmate
  • mathmate
Yes, that is correct for (c). Again, your response was not updated. I had to check through you profile every time I suspect a response. You're comfortable continuing?
anonymous
  • anonymous
Okay, and yes
anonymous
  • anonymous
How would I find (d) now @mathmate
mathmate
  • mathmate
Each deck has 52 cards, divided by 4 suits gives 13 cards per suit to start with (not 14). (a) before drawing any card, we have 13 clubs and 52 cards. (b) given the first card drawn was a club, before drawing the second card, we have 12 clubs and 51 cards. (c) given the first 2 cards drawn were clubs, before drawing the third card, we have how many clubs and how many cards in the deck? (d) given the first 3 cards drawn were clubs, before drawing the fourth card, we have how many clubs and how many cards in the deck?
anonymous
  • anonymous
so (d) is: 10/49?
anonymous
  • anonymous
This is what I have.... is it correct @mathmate ? (a) 1/4 (b) 12/51 (c) 11/50 (d) 10/49 (e) 9/48
mathmate
  • mathmate
Looks good so far. Keep it up, you're almost there!
anonymous
  • anonymous
Im a little confused on f and g!
mathmate
  • mathmate
Have you done conditional probability before?
anonymous
  • anonymous
Kinda
anonymous
  • anonymous
When it says product, do I just multiply a-e?
anonymous
  • anonymous
?@mathmate
mathmate
  • mathmate
Yes, the numerical part is just the product of the 5 probabilities. Give me a minute for the explanation part of (f). Once you have the numerical probability of clubs obtained in (f), how would you propose to find (g)?
anonymous
  • anonymous
so f is then: 11880/23990400??
anonymous
  • anonymous
@mathmate
anonymous
  • anonymous
Then would g be the decimal value of f?
mathmate
  • mathmate
It's almost correct, but you need to simplify it to the simplest form. Can you do that?
anonymous
  • anonymous
I was gonna ask u lol, I'm not sure how to simplify it... im trying
mathmate
  • mathmate
No. Think of (g) is for the case where there are 4 suits instead of just clubs. Imagine buying raffle tickets. What are the changes of winning if you bought 4 instead of one?
anonymous
  • anonymous
I have 495/999600 so far
anonymous
  • anonymous
for f..
anonymous
  • anonymous
33/66640
anonymous
  • anonymous
Is this f?? 33/66640
mathmate
  • mathmate
Factors that you can cancel are like 36...
anonymous
  • anonymous
is this right @mathmate 33/66640
mathmate
  • mathmate
That is correct.
anonymous
  • anonymous
Ok thank you! now, g?
mathmate
  • mathmate
Now try (g)
anonymous
  • anonymous
hmm?
anonymous
  • anonymous
g) You have now found the probability of being dealt a flush in clubs. This is the same as the probability of being dealt a flush in diamonds, hearts, or spades. Then, what is the proability of being dealt a flush?
anonymous
  • anonymous
im not sure what its asking for an answer....@mathmate
mathmate
  • mathmate
Means a flush of any of the 4 suits. Imagine buying raffle tickets. What are the changes of winning if you bought 4 instead of one?
mathmate
  • mathmate
*chances
anonymous
  • anonymous
4 times as much?@mathmate
anonymous
  • anonymous
?
mathmate
  • mathmate
Right! That's. I hope you are better prepared for the next question.
anonymous
  • anonymous
But what would g be??
anonymous
  • anonymous
Is the answer: 4 times as much? @mathmate
mathmate
  • mathmate
4 times what you got for (f).
anonymous
  • anonymous
so is it: .002?
anonymous
  • anonymous
132/266560 in fraction form <-- is this the answer @mathmate
mathmate
  • mathmate
I would rather put it as 4*(33/66640) =33/16660. In probabilities, small numbers like 0.002 is better represented by fractions.
anonymous
  • anonymous
thx! so g @mathmate is 33/16660?
anonymous
  • anonymous
but thats lower than f.
mathmate
  • mathmate
Yes. I am sorry it is probably painful for you as much as for me because the system does not respond (does not update). So I don't really know when you put in a response.
anonymous
  • anonymous
its ok but @mathmate how is g 33/16660? when f is higher than that value?
mathmate
  • mathmate
When the denominator is 4 times smaller, it means that the fraction is 4 times bigger. For example, 1/4 is smaller than 1/1.
anonymous
  • anonymous
Oh oak!! thanks for all your help
mathmate
  • mathmate
You're welcome! Good luck with your homework/exam! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.