Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

If \( abc = 1 \) where \( a, b, c > 0 \) show that \[ a^2 + b^2+c^2 \ge a+b+c \] No Lagrange multipliers allowed.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
I think it involve multiplying a side by \(abc\)
i just solved it after posting .. it was clever!! I'll keep the question open for a while.
@wio would you like a hint .. since i had it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

What's the hint?
it's AM-GM inequality. Perhaps you are familiar. \[ 3(a^2+b^2+c^2) \ge (a+b+c)^2 \ge 3(ab+bc+ca) \] This is half of it, the other one, i presume you know it.
sorry, also i forgot to specify that \( a, b, c > \) at the beginning.
They're greater than 0? cause that changes a lot
Well, the problem is stated as "Let a; b; c be positive real numbers such that abc = 1. Prove that ... "
Ah ok.
I was messing around with algebra getting dead ends like \[ \begin{array}{rcl} a^2 + b^2+c^2 &\ge& a+b+c \\ a^2 + b^2+c^2 &\ge& a^2bc+b^2ac+c^2ab \\ 0 &\ge& (bc-1)+(ac-1)+(ab-1) \\ 0 &\ge& bc+ac+ab-3 \\ 3 &\ge& bc+ac+ab \\ \end{array} \]
Here's a short proof hint ... i had written earlier. \[ \begin{align*} 3(a^2+b^2+c^2) & = a^2 + b^2 + c^2 + (a^2+b^2) + (b^2 + c^2) + (c^2+a^2) \\ & \ge a^2 + b^2 +c^2 + 2 a b + 2 b c + 2 c a \\ & = (a+b+c)^2 \\ & = \frac{2(a^2 + b^2 +c^2)}{2} + 2 a b + 2 b c + 2 ca \\ & \ge \frac{ 2 a b + 2 b c + 2 ca }{2} + 2 a b + 2 b c + 2 ca \\ & = 3(a+b+c) \end{align*} \]
the other hint would to be make use of AM-GM inequality for 3 variables.
\[ 3(a^2+b^2+c^2) \ge (a+b+c)^2 \\ 3 = 3 \sqrt[3]{abc} \le (a+b+c) \] Dividing will do the job!!
(a+b+c)/3 >= (abc)^1/3 a+b+c>=3 Now, a^2+b^2+c^2=(a+b+c)^2 -2ab -2bc-ca SO, a^2+b^2+c^2>=(a+b+c)^2 .....i Since, a+b+c>=3 (a+b+c)^2 >=a+b+c ....ii Thus, from i and ii, a^2+b^2+c^2 >=a+b+c

Not the answer you are looking for?

Search for more explanations.

Ask your own question