ksaimouli
  • ksaimouli
What is the average value of the function on the interval from x=-3 to x=-1
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ksaimouli
  • ksaimouli
http://online.math.uh.edu/apcalculus/exams/images/AP_AB_version1__85.gif
ksaimouli
  • ksaimouli
@amorfide
mathmate
  • mathmate
The average value of the function would be \(\large \int_{-3}^{-1} g(x)dx \) Can you do the integration?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
i exactly did that does not work
mathmate
  • mathmate
Sorry, the integral should be divided by (-1- (-3))=2 to get the average value.
ksaimouli
  • ksaimouli
?
mathmate
  • mathmate
what did you get?
mathmate
  • mathmate
Average value = \( \large \int_a^b f(x)dx / (b-a) \)
ksaimouli
  • ksaimouli
28/6
mathmate
  • mathmate
You have the correct answer, but you need to simplify it (14/3) and divide by 2 which comes from (-1-(-3)), the length of interval of integration.
mathmate
  • mathmate
In the end, you should get 7/3.
ksaimouli
  • ksaimouli
ya thx
mathmate
  • mathmate
@oldrin.bataku I think there was a mix-up with the substituted limits of integration.
ksaimouli
  • ksaimouli
i got it
mathmate
  • mathmate
That's good! Keep it up!

Looking for something else?

Not the answer you are looking for? Search for more explanations.