geerky42
  • geerky42
Help Needed
Physics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

geerky42
  • geerky42
1 Attachment
anonymous
  • anonymous
ok. Let the mass of the particle be m. Net force acting on a particle can be written as : \[F = \frac{ dP }{ dt }\] where P is the momentum of the particle. Therefore, dP = Fdt \[\int\limits_{Po}^{P} dP = \int\limits_{0}^{t}Fdt\] Therfore, \[P2 - P1 = \int\limits_{0}^{t}Fdt\] Which means, change in momentum = area under the Force vs. Time graph. From the given graph, area under the graph = \[(\frac{ 1 }{ 2 } * 3 * 8) + (3*8) + (\frac{ 1 }{ 2 }*3*8) = 48Ns\] initial momentum = mv = m*(-4.4) = -4.4m kgm/s Let final velocity be V. Therefore, final momentum = mV Therefore change in momentum = mV - (-4.4m) = m(V+4.4) kgm/s equating, m(V+4.4) = 48 If we know the mass of the particle, we can calculate its final velocity using this equation. If mass is not known, we cannot determine the final velocity
geerky42
  • geerky42
Oh, mass is known, It was reminded in previous question. Thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.