Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

geerky42

  • one year ago

Help Needed

  • This Question is Closed
  1. geerky42
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    1 Attachment
  2. Saikam
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    ok. Let the mass of the particle be m. Net force acting on a particle can be written as : \[F = \frac{ dP }{ dt }\] where P is the momentum of the particle. Therefore, dP = Fdt \[\int\limits_{Po}^{P} dP = \int\limits_{0}^{t}Fdt\] Therfore, \[P2 - P1 = \int\limits_{0}^{t}Fdt\] Which means, change in momentum = area under the Force vs. Time graph. From the given graph, area under the graph = \[(\frac{ 1 }{ 2 } * 3 * 8) + (3*8) + (\frac{ 1 }{ 2 }*3*8) = 48Ns\] initial momentum = mv = m*(-4.4) = -4.4m kgm/s Let final velocity be V. Therefore, final momentum = mV Therefore change in momentum = mV - (-4.4m) = m(V+4.4) kgm/s equating, m(V+4.4) = 48 If we know the mass of the particle, we can calculate its final velocity using this equation. If mass is not known, we cannot determine the final velocity

  3. geerky42
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Oh, mass is known, It was reminded in previous question. Thanks.

  4. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.