anonymous
  • anonymous
find the absolute minimum and absolute maximum for the given funtion f(x)=x-2sinx between 0 and 2(pi)
Trigonometry
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
PLS GIVE A SIMFILICATION TO SOLVE THE PROBLEM
ZeHanz
  • ZeHanz
Use the derivative:\[f'(x)=1-2\cos x\]Solve the equation:\[f'(x)=0 \Leftrightarrow 1-2\cos x = 0 \Leftrightarrow \cos x = \frac{ 1 }{ 2 }\]There are two solutions in [0, 2pi]. These are the x-values where f has a (local) extreme. You can calculate the extremes by substituting the solutions of f' in f. Also calculate f(0) and f(2pi) to get the extremes in the endpoints. If you have all the extremes, you can decide what the absolute maximum and minimum values are.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.