anonymous
  • anonymous
How to determine the value of k of the trinomial that is a perfect square? 9x^2 + kx + 49
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
Recall that \((3x + 7)^2 = 9x^2 + \cdots+49\).
ajprincess
  • ajprincess
If \(ax^2+bx+c\) is a perfect square then \(b=2*\sqrt a*\sqrt c\) here a=9 and c=49 Does that help @peekaboopork
mathstudent55
  • mathstudent55
(a + b)^2 = a^2 + 2ab + b^2 9x^2 = (3x)^2 49 = 7^2 (3x + 7)^2 = 9x^2 +42x + 49 (3x - 7)^2 = 9x^2 - 42x + 49 k = 42 or k = -42

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
A good way to find the middle term is to realize that in a perfect square, \(2ab\) is the middle term where \((a +b)^2 = a^2 + 2ab + b^2\). Here, \(b^2= 49 \iff b = 7\) and \(a^2 = 9x^2 \iff a = 3x \).
ParthKohli
  • ParthKohli
So what would \(2\cdot 7\cdot 3x\) be?
ParthKohli
  • ParthKohli
Actually I should have put \(\pm\), but it still would have the same result!

Looking for something else?

Not the answer you are looking for? Search for more explanations.