anonymous
  • anonymous
A neutron star has a constant density of 6 * 10^27 kg/m^3 and a mass five times that of our Sun. Compare its rotational inertia with that of the Earth (assume constant density). In both cases, the rotation axis is an axis through the center of the sphere.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
what about the radius ?!
anonymous
  • anonymous
@Mashy you know the density and the mass of the star. you can find the radius.
anonymous
  • anonymous
the ratio of the rotational inertia or the moment of inertia of star to the earth would be m1*(R1)^2/ m2*(R2)^2 m1 is five times the solar mass m2,R2 are the mass and radius of the earth R1 can be calcualted as follows 4/3pi(R1)^3 * d = m1 where d is the density

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thank you very much Diwakar. Yeah, I can see where you're going with that last calculation... just multiply volume of the sphere times the density, and volume cancels out, and the only variable left to solve for is r. Thanks so much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.