UnkleRhaukus
  • UnkleRhaukus
\[\newcommand\dd[1]{\,\mathrm d#1}% infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}}% integral _{a}^{b}{f(x)}\dd x \newcommand\erf[1]{\operatorname {erf}\left(#1\right)}% Error function (x) \newcommand\erfi[1]{\frac2{\sqrt \pi}\intl{0}{#1}{e^{-u^2}}{u}}% Error function integral (x) {-------------------}\\ \text{From the definition prove the result:} \\ \erf x=\frac2{\sqrt\pi}\left\{x-\frac{x^3}3+\frac{x^5}{2!5}\color{brown}-\frac{x^7}{3!7}+\dots\right\}\\ {-------------------}\]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\ \erf x &=\erfi x\\ &=\\ &\,\vdots\\ &=\\ &=\frac2{\sqrt\pi}\left\{x-\frac{x^3}3+\frac{x^5}{2!5}+\frac{x^7}{3!7}+\dots\right\} \end{align*}\]
UnkleRhaukus
  • UnkleRhaukus
I'm not sure how to turn the integral into the infinite series,
AravindG
  • AravindG
as always this is above my level always wish i could help !

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
Looks like a Maclaurin Series bro.
UnkleRhaukus
  • UnkleRhaukus
are you series ?
ParthKohli
  • ParthKohli
lol\[f(x) = \sum_{n = 0}^{\infty}\dfrac{{f^n}(0)}{n!}x^n\]Definitely not a Maclaurin.
ParthKohli
  • ParthKohli
Not sure. I am not good at this :-(
UnkleRhaukus
  • UnkleRhaukus
ah yes Maclaurin Series (13) http://mathworld.wolfram.com/MaclaurinSeries.html
anonymous
  • anonymous
looks like the series is \[ \frac{x^{2n+1}}{n!(2n+1)} \]
anonymous
  • anonymous
But that - sign in there is throwing me off
UnkleRhaukus
  • UnkleRhaukus
\[\newcommand\dd[1]{\,\mathrm d#1}% infinitesimal \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}}% integral _{a}^{b}{f(x)}\dd x \newcommand\erf[1]{\operatorname {erf}\left(#1\right)}% Error function (x) \newcommand\erfi[1]{\frac2{\sqrt \pi}\intl{0}{#1}{e^{-u^2}}{u}}% Error function integral (x) \newcommand\de[2]{\frac{\mathrm d #1}{\mathrm d#2}} % first order derivative \erf x =\erfi x \\ \de{\erf x}x =\de{}x\erfi x\\ \qquad\quad\quad=\frac2{\sqrt\pi}e^{-x^2} \]
anonymous
  • anonymous
Why not use: \[ \Large e^{x} = \sum_{n=0}^{\infty } \frac{x^n}{n!} \implies e^{-x^2} = \sum_{n=0}^{\infty } \frac{(-x^2)^n}{n!} \]
anonymous
  • anonymous
It's really easy to find the anti derivative
UnkleRhaukus
  • UnkleRhaukus
i think i got it now ! thanks!
anonymous
  • anonymous
No problem,
anonymous
  • anonymous
the part that threw me off was that there wasn't an alternating - +
UnkleRhaukus
  • UnkleRhaukus
oh dear i made an error in the question , it should be alternating , like you say @wio
anonymous
  • anonymous
@UnkleRhaukus Where are you getting the questions from anyway?
UnkleRhaukus
  • UnkleRhaukus
ParthKohli
  • ParthKohli
What is all this `\newcommand` thing? Are we allowed to introduce new variables in MathJax?
anonymous
  • anonymous
Is it a class you're getting it from?
anonymous
  • anonymous
Or a book or what?
anonymous
  • anonymous
@ParthKohli you're allowed to make command shortcuts, but I think it only works for your own post.
UnkleRhaukus
  • UnkleRhaukus
MATH202 Differential equations sophomore subject \[\emph{Exercise 4D}1(d)\]
UnkleRhaukus
  • UnkleRhaukus
Are new commands allowed Ambassador?
experimentX
  • experimentX
don't expand that series ... just integrate inside summation sign.
UnkleRhaukus
  • UnkleRhaukus
1 Attachment
experimentX
  • experimentX
there are many cases where you have to change functions into infinite series to evaluate integral with real methods. I think ... expanding the series will just mess up.
UnkleRhaukus
  • UnkleRhaukus
have i done something wrong?
experimentX
  • experimentX
no it's okay ... just advised for simplicity. |dw:1358071243367:dw|
experimentX
  • experimentX
|dw:1358071379099:dw|
UnkleRhaukus
  • UnkleRhaukus
\[\newcommand\dd[1]{\,\mathrm d#1} % infinitesimal \newcommand\de[2]{\frac{\mathrm d #1}{\mathrm d#2}} % first order derivative \newcommand\intl[4]{\int\limits_{#1}^{#2}{#3}{\dd #4}} % integral _{a}^{b}{f(x)}\dd x \newcommand\erf[1]{\operatorname {erf}\left(#1\right)} % Error function (x) \newcommand\erfi[1]{\frac2{\sqrt \pi}\intl{0}{#1}{e^{-u^2}}{u}} % Error function integral (x) \begin{align*} \erf x &=\erfi x\\ &=\frac2{\sqrt\pi}\intl0x{\sum_{n=0}^{\infty } \frac{\left(-u^2\right)^n}{n!}}u\\ &=\frac2{\sqrt\pi}\sum_{n=0}^{\infty }\frac{(-1)^n}{n!}\intl0x{ u^{2n}}u\\ &=\frac2{\sqrt\pi}\sum_{n=0}^{\infty }\frac{(-1)^n}{n!}\left.\frac{ u^{2n+1}}{2n+1}\right|_0^x\\ &=\frac2{\sqrt\pi}\sum_{n=0}^{\infty }\frac{(-1)^n}{n!}\frac{ x^{2n+1}}{2n+1}\\ &=\frac2{\sqrt\pi}\left\{x-\frac{x^3}3+\frac{x^5}{2!5}-\frac{x^7}{3!7}+\dots\right\}\\ \end{align*} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.