anonymous
  • anonymous
How would you describe the roots of a quadratic equation?
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Like: \[\frac{ -3\pm \sqrt{17} }{ 4 }\]
mathmate
  • mathmate
Graphically, they (real zeroes) cross the x-axis. If the zeroes are complex, they do not touch the x-axis.. Numerically, the roots, x1 and x2, have the property that f(x1)=0 and f(x2)=0, where f(x)=0 is the quadratic equation.
anonymous
  • anonymous
|dw:1358090824515:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1358090914575:dw|
anonymous
  • anonymous
the roots describe the values of x for which the required quadratic function's value is zero.
hba
  • hba
Actually we use the discriminant to determine, \[\huge\ D=b^2-4ac\]
anonymous
  • anonymous
@hba Thats what i got as the discriminant
hba
  • hba
\[b^2-4ac>0,two \ real \ solutions\]\[b^2-4ac=perfect \ squar e ,Two \ real \ rational \ solutions\]
hba
  • hba
If, \[b^2-4ac= no \ perfect \ sq uare,Two \ real \ irrational \ solutions\]
hba
  • hba
\[b^2-4ac=0,One \ real \ solution\]
hba
  • hba
\[b^2-4ac<0,No \ real \ but \ two \ imaginary \ solutions\]
anonymous
  • anonymous
Thanks! @hba
hba
  • hba
You are welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.