anonymous
  • anonymous
use the binomial theorem to expand the binomial. (3v+s)^5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@campbell_st
anonymous
  • anonymous
Possible answers : s5 + 45s4v + 270s3v2 + 810s2v3 + 1215sv4 + 729v5 s5 + 15s4v + 90s3v2 + 270s2v3 + 405sv4 + 243v5 s5 + 15s4v + 90s3 + 270s2 + 405s + 243 s5 – 5s4v + 10s3v2 – 10s2v3 + 5sv4 – v5
anonymous
  • anonymous
@Butterfly16

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

campbell_st
  • campbell_st
ok... so pascal's triangle will give the coefficients |dw:1358116269604:dw| starting with (3v)^5 and (s)^0 decrease the power or 3v by 1 each time and increase the power of s so you will have, using the last line of pascals triangle.. \[1 \times (3v)^5\times (s)^0 + 5\times (3v)^4\times(s)^1 + 10 \times (3v)^3 \times (s)^2 +...... \] you need to continue until your have (3v)^0 and (s)^5
anonymous
  • anonymous
how:/
anonymous
  • anonymous
Sorry I can't help with this one, I'm not sure how. :/
anonymous
  • anonymous
me either. i guess ill just guess.

Looking for something else?

Not the answer you are looking for? Search for more explanations.