Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

use the binomial theorem to expand the binomial. (3v+s)^5

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Possible answers : s5 + 45s4v + 270s3v2 + 810s2v3 + 1215sv4 + 729v5 s5 + 15s4v + 90s3v2 + 270s2v3 + 405sv4 + 243v5 s5 + 15s4v + 90s3 + 270s2 + 405s + 243 s5 – 5s4v + 10s3v2 – 10s2v3 + 5sv4 – v5

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ok... so pascal's triangle will give the coefficients |dw:1358116269604:dw| starting with (3v)^5 and (s)^0 decrease the power or 3v by 1 each time and increase the power of s so you will have, using the last line of pascals triangle.. \[1 \times (3v)^5\times (s)^0 + 5\times (3v)^4\times(s)^1 + 10 \times (3v)^3 \times (s)^2 +...... \] you need to continue until your have (3v)^0 and (s)^5
how:/
Sorry I can't help with this one, I'm not sure how. :/
me either. i guess ill just guess.

Not the answer you are looking for?

Search for more explanations.

Ask your own question