anonymous
  • anonymous
evaluate the intergral -1 to 6 (x-2)/(x^2-5x-14) dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{-1}^{6} \frac{ x-2 }{ x^2-5x-14 }\]
slaaibak
  • slaaibak
\[\int\limits_{-1}^{6} {x-2 \over (x+2)(x -7)} dx\] now do the whole partial fractions thing
anonymous
  • anonymous
\[\frac{ A }{ x-7 } + \frac{ B }{ x+2 }\] then getting everything with the same denominator I get.. \[x-2 = A(x+2) + B (x-7)\] then plugging in the different zeros, x=7 and x=-2 I solve for A and B. \[ A = \frac{ 5 }{ 9 }\] \[ B = \frac{ 4}{ 9 }\] Now the overall equation looks like: \[= \frac{ 5 }{ 9 } \int\limits_{}^{} \frac{ 1 }{ x-7 } dx + \frac{ 4 }{ 9 } \int\limits_{}^{} \frac{ 1 }{ x+2 } dx\] now what..? am I even doing this right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Goten77
  • Goten77
hmm
Goten77
  • Goten77
yes... but in this form now its put into the ln form....
Goten77
  • Goten77
|dw:1358132021880:dw|
Goten77
  • Goten77
you got it into the like ... i cant think of the name but its a form name.... but you did it right
anonymous
  • anonymous
right. so it would be \[= \left[ \frac{ 5\ln |x-7| }{ 9 } + \frac{ 4\ln |x+2| }{ 9 } \right] _{-1} ^{6}\] and then I evaluate it at x=6 and then subtract x=-1 ?
slaaibak
  • slaaibak
yeah. nice job.

Looking for something else?

Not the answer you are looking for? Search for more explanations.