evaluate the intergral -1 to 6 (x-2)/(x^2-5x-14) dx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

evaluate the intergral -1 to 6 (x-2)/(x^2-5x-14) dx

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{-1}^{6} \frac{ x-2 }{ x^2-5x-14 }\]
\[\int\limits_{-1}^{6} {x-2 \over (x+2)(x -7)} dx\] now do the whole partial fractions thing
\[\frac{ A }{ x-7 } + \frac{ B }{ x+2 }\] then getting everything with the same denominator I get.. \[x-2 = A(x+2) + B (x-7)\] then plugging in the different zeros, x=7 and x=-2 I solve for A and B. \[ A = \frac{ 5 }{ 9 }\] \[ B = \frac{ 4}{ 9 }\] Now the overall equation looks like: \[= \frac{ 5 }{ 9 } \int\limits_{}^{} \frac{ 1 }{ x-7 } dx + \frac{ 4 }{ 9 } \int\limits_{}^{} \frac{ 1 }{ x+2 } dx\] now what..? am I even doing this right?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

hmm
yes... but in this form now its put into the ln form....
|dw:1358132021880:dw|
you got it into the like ... i cant think of the name but its a form name.... but you did it right
right. so it would be \[= \left[ \frac{ 5\ln |x-7| }{ 9 } + \frac{ 4\ln |x+2| }{ 9 } \right] _{-1} ^{6}\] and then I evaluate it at x=6 and then subtract x=-1 ?
yeah. nice job.

Not the answer you are looking for?

Search for more explanations.

Ask your own question