anonymous
  • anonymous
I was comparing the areas of a triangle that could be obtained via the conventional method, dot product, and cross product. Strangely, the latter did not agree with the former two. Consider two vectors, A <1,1,1> and B<1,1,0>. Both these vectors form a right angled triangle with an angle of 45deg between both vectors, a hypotenuse of SQRT(3), and length of SQRT(2).
OCW Scholar - Multivariable Calculus
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Now, the conventional method for finding the area of a triangle is (height X length)/2. In this case, it would be (SQRT(3)(sin45deg) X SQRT(2))/2. The answer obtained is 0.866.
anonymous
  • anonymous
For the dot product, remember that we could find the area of a triangle with a "shortcut method" i.e. (|A'||B|sin(x))/2. Therefore, the area would be (SQRT(3)(sin45deg) X SQRT(2))/2 which gives an answer of 0.866.
anonymous
  • anonymous
But when it comes to the cross product, things get a little strange.\[A \times B = <-1,1,0>\]To find its magnitude (which is equals to the area of a parallelogram): \[\sqrt{(-1)^{2}+(1^{2}) + 0^{2}} = \sqrt{2}\]To find the area of the triangle, we divide the answer above by 2: \[\frac{ \sqrt2 }{2} = 0.7071\] The area obtained using the cross product is different from the other two methods!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Waynex
  • Waynex
The area you calculated via the cross product is the correct one. The problem you have on the first two is that the angle between A and B is not pi/4. The angle would be pi/4 if both vectors were in the xy plane, but one vector is shift upward in angle, and that changes the angle between them. The angle is actual arccos[2/sqrt(6)], or aprox. 0.61 radians. The first equation would be sqrt(3) * sqrt(2) * sin(0.615...) * 0.5 = 0.707....
anonymous
  • anonymous
Waynex, Thanks for you input on my question. You were right; I was assuming the angle between A and B to be pi/4 (a HUGE mistake). After recalculating the equations, all three areas agree with each other. I can now sleep in peace!

Looking for something else?

Not the answer you are looking for? Search for more explanations.